Description of In-situ Oil Upgrading Mechanism for In-situ Combustion Based on a Reductionist Chemical Model

Author:

Hascakir B..1

Affiliation:

1. Texas A&M University

Abstract

Abstract Oil recovery following in-situ combustion (ISC) is highly dependent on initial oil saturation. The mechanisms leading to this dependence are not well understood due to the complexity of the reaction pathways leading to oil upgrading. We hypothesize that this dependence can be explained through a reductionist chemical model based on Saturates, Aromatics, Resins, and Asphaltenes (SARA) fractionation. We then substantiate this model with five combustion tube experiments, and by performing SARA fractionation on produced oils. The combustion tube experiments are conducted at identical experimental conditions but varying initial oil saturations of 13%, 26%, 34%, 42%, and 53%. The produced oil samples are examined with viscosity and API gravity measurements and weight of SARA fractions. Analysis of SARA fractions is performed with Fourier Transform InfraRed Spectroscopy (FTIR). The oil recovery and the produced gas and temperature profiles are used to define the dominant reaction type that occurred throughout the experiments, namely High Temperature Oxidation (HTO) or Low Temperature Oxidation (LTO) reactions. Metal content of the produced water samples are determined with Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). The highest temperature, with greatest oil recovery and the highest carbon dioxide concentration are observed in the experiment conducted with 42% initial oil saturation in which the HTO reactions dominate the reaction path. However, the higher oxygen and lower carbon dioxide yields observed during the experiments with 13% and 26% initial oil saturations indicate that those experiments are controlled mainly by the LTO reactions. The experiments which show dominance in HTO reactions produce low density but higher viscosity oil. On the other hand, a reverse relationship is observed for cases with LTO reaction dominance. The analysis of SARA fractions with FTIR displays significant variations in molecular structure of aromatic fractions only. A quantitative analysis of resins to aromatics ratio strongly correlates with the viscosity of the samples. Hence, we conclude that resins to aromatics ratio governs the viscosity reduction and the molecular structure of the aromatic fraction seems to be the leading factor of density improvement. ICP- MS analysis on produced water show that the dominance of the HTO reactions reduces the water-oil interaction, which leads to the production of more neutral pH water. ISC is one of the most efficient thermal enhanced oil recovery methods in which maximum oil recovery can be attained. However, the complexity of the chemical reactions taking place during the process make this process difficult to understand and control. In this study, we provide a reductionist chemical model based on SARA fractionation to explain the reaction pathways describing the in-situ oil upgrading mechanisms and the dependence of oil recovery on initial oil saturation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3