Development of Artificial Intelligence Models for Prediction of Crude Oil Viscosity

Author:

Al-Amoudi Luai Ali1,Ba geri Badr Salem2,Patil Shirish3,Baarimah Salem Obaid1

Affiliation:

1. Hadhramout University

2. King Fahd University of Petroleum & Minerals, Hadhramout University

3. King Fahd University of Petroleum & Minerals

Abstract

Abstract Crude oil viscosity is a significant parameter for the fluid flow in both porous media and pipe lines. Therefore, it has to be determined using highly accurate methods. Oil viscosity is usually predicted with the correlations obtained from the laboratory measured data. However, some of the presented correlations have very complicated assumptions which make them very difficult to apply in most of the case studies reported. On the other hand, simplified correlations companies the accuracy. The present work in this paper studies predictive capabilities of Artificial Intelligence (AI) to estimate the oil viscosity. Artificial Neural Network (ANN) models are proposed to predict the undersaturated, saturated and dead oil viscosity in Yemeni fields. A data set consisting 545 of laboratory measurements on oil samples was gathered from different oil fields in Yemen. 70% of the data points were used to train the proposed ANN models while the remaining data set was tested the model performance. The performance of the ANN methods was compared with some of the conventional correlations such as (Beal's correlation, Khan's correlation, Kartoatmodjo and Schmidt correlation, Vasquez-Begg's correlation, Chew and Connaly correlation, Beggs and Robinson correlation, Elsharqawy correlation and Glaso's correlation). The result of this study shows the superiority of the Artificial Neural Network (ANN) models over the current models for predicting oil viscosity from PVT data. The comparative results displayed that the proposed ANN models performed better with higher accuracy than those obtained with published correlations.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3