Denuding Hydrocarbon Liquids of Natural Gas Constituents by Hydrate Formation

Author:

Verma V.K.1,Hand J.H.1,Katz D.L.1,Holder G.D.1

Affiliation:

1. U. of Michigan

Abstract

Hydrate formation from gases dissolved in hydrocarbon liquids partially strips lighter components from the liquid phase. Experiments demonstrate why Alaskan North Slope crude oils found below the permafrost can be expected to be denuded of a substantial portion of their dissolved gases. Introduction Gas hydrates are crystalline, ice-like solids formed when certain light hydrocarbons and other low-molecular-weight, nonpolar substances are contacted with water. Previous work in this field, which has been extensively reviewed, bad the major thrust of defining conditions that allow industrial gas-processing units to operate free from deposition of solid hydrates. Gas hydrates are known to exist in natural gas fields in colder climates, and it is believed that they also can exist in oil fields, under permafrost, if suitable pressure-temperature permafrost, if suitable pressure-temperature conditions prevail. The majority of previous studies considered conditions for hydrate formation from pure gases and gas mixtures, although it is now known that a gas phase need not be present to form hydrates. That is, gas hydrates can be formed from liquids containing dissolved hydrate-forming gases. It follows that if hydrate-forming conditions exist in oil fields, the lighter hydrocarbons can be removed from crude oils, rendering the denuded crudes that are low in methane to isobutane constituents. Such denuded crudes will have no dissolved gases to expel the oil and will have high viscosity, making them difficult to displace. This problem can be further complicated by the blockage problem can be further complicated by the blockage of reservoir rock pores, which can reduce flow of oil to the recovery well. This study shows the denuding effect of hydrate formation on two condensates and one crude oil containing dissolved methane and propane gases, and is a continuation of our recent study on hydrate formation from methane-propane and methane-propane-decane liquid mixtures. Experimental Apparatus and Procedure The experimental apparatus, shown schematically in Fig. 1, consisted of an instrumented, high-pressure, glass-windowed cell immersed in a controlled temperature bath. In a typical run, each hydrocarbon component was charged quantitatively to the cell and the resulting mixture was pressurized by injecting water. After mixing by rocking the cell, the bubble-point curve was determined by a method described by Katz et al. Next, the four-phase (vapor, liquid hydrocarbon, liquid water, and hydrate) equilibrium point was measured by subcooling the system to initiate hydrate formation, bringing the cell to equilibrium conditions, and holding for 6 to 8 hours. Only a few hydrate crystals and a very small gas bubble were allowed to exist in equilibrium with the large hydrocarbon phase to insure small changes from the initial measured composition. To demonstrate denuding, all hydrate crystals were melted and the system was pressurized well above the bubble point at a temperature below the quadruple point. Large amounts of hydrates were formed. point. Large amounts of hydrates were formed. JPT P. 223

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3