Optimized Downhole Mud Motor Delivers Outstanding Performance Improvement in Alaska Coiled Tubing Drilling

Author:

Anyanwu Okechukwu N.1,Klotz Christian1,Labrecque Denis1,Ulrich Carl1

Affiliation:

1. Baker Hughes

Abstract

Abstract For almost two decades, coiled tubing drilling (CTD) has proved to be a successful method to reach the un-swept portions of Alaska’s North Slope reservoirs. This method of drilling has evolved over the years with new technologies and efforts from contractors and operators striving to improve performance from lessons learned. Despite these improvements in equipment and processes, operators and contractors must still deal with certain inherent deficiencies of this drilling method when compared to conventional rotary drilling – suboptimal weight transfer, sometimes troublesome hole cleaning — due mainly to lack of string rotation and low flow rate range, etc. These shortcomings have the potential to induce other drilling performance problems that affect the smoothness of coiled tubing drilling operations. Severe lateral vibration and severe stalling have become acceptable evils over the years, resulting in undesirable trips for failure and unacceptable non- productive time (NPT), both undermining one of the key benefits of coiled tubing drilling – rapid pace operations compared to rotary drilling. This paper introduces a new lower-speed downhole positive displacement motor (PDM). The technology is equipped with high-performance elastomer and was engineered to improve drilling and drill-bit performance in CTD applications. Recent field deployments in Alaska’s North Slope CTD operations proved this design by eliminating earlier performance problems for improved CTD project economics. For example, the technology’s ability to allow for about 10gal/min higher flow rates (compared to other motor designs) significantly improves hole cleaning; a key aspect in CTD operations. Up to today, this downhole mud motor design has been utilized on 13 wells, accumulating 1,303 circulating hours, 577 drilling hours and over 20,700 ft drilled. Performance improvements in depth of cut, reduced lateral vibration, reduced amount of stalls, and other benefits were achieved. There was no trip for PDM failure in all of the 34 runs, traversing different formation zones. The corresponding paper will provide additional information on application benefits by investigating two recent field deployments.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3