Can Unconventional Completion Systems Revolutionise EGS? A Critical Technology Review

Author:

Guinot Frédéric1,Meier Peter1

Affiliation:

1. Geo Energie Suisse A.G.

Abstract

Abstract The technical and economic successes of deep geothermal development rely on reducing drilling and completion risks. In the closely related oil and gas activities, the risk taken by the investors is balanced by the high reward that successful projects achieve by immensely offsetting the losses of the failed wellbores. Geothermal projects experience similar risks, however, the potential reward is limited by the competition with other energy sources, in a heavily regulated market. The economic acceptability of geothermal power generation requires low risk drilling and completion technologies that would work under many different geological conditions. When wells are drilled into a petro-thermal formation, sometimes referred to as hot dry rock (HDR), there is normally no clear circulation path between these wells and when this path exists, the transmissivity is so low that no economical project is possible. Enhanced geothermal systems (EGS), in these circumstances is closer to reservoir creation than to conventional reservoir stimulation. Therefore, developing technologies that achieve the designed EGS size and transmissivity is vital to deep geothermal development. The EGS becomes a viable proposition, when enough rock surface can be contacted by the geothermal fluid, and when the flow path runs smoothly through a sufficient rock volume to minimize the energy depletion and have the project running over a long period, compatible with a positive net present value (NPV). To that end, the well design and its completion system have to be engineered to maximize the chances of properly creating the EGS. In this paper, lessons learnt from past geothermal experience are reviewed and analysed to propose a multi-stage system as a mean of improving geothermal wells completion reliability. Current oil and gas (namely "unconventional") completion technologies related to multi-stage stimulation have been reviewed and different options are discussed in the scope of a deep geothermal hot dry rock project. While previous works conclude that technologies developed for oil and gas are readily available and applicable to deep geothermal projects and EGS (Gradl, 2018), this study shows that shortcomings exist and that further developments are necessary to reliably and economically complete EGS projects. The necessary tests before running different parts is also discussed. Other options for reservoir creation are debated with their potential benefits and associated risks. The developments that could make them work in an EGS project are discussed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3