Understanding Selective Plugging and Biofilm Formation of a Halophilic Bacterial Community for MEOR Application

Author:

Klueglein Nicole,Kögler Felix,Adaktylou Irini J.,Wuestner Marina L.,Mahler Eva,Scholz Justus,Herold Andrea,Alkan Hakan

Abstract

Abstract MEOR (microbial enhanced oil recovery) is known as one of the emerging low-cost EOR technologies, which uses in-situ microorganisms living in the oil field. Some of the most promising microbial-induced mechanisms include production of extracellular polymeric sugars (EPS), biofilms as well as selective plugging caused by cell growth. However, there is limited data available concerning the way microbes and biofilms behave in contact to surfaces in porous media in the context of MEOR. The aim of this work was to investigate bacterial growth and biofilm production in the framework of an ongoing MEOR project conducted by Wintershall and BASF. We used various approaches to investigate cell behavior of a halophilic bacterial community derived from a Wintershall oil field. Bacterial growth was conducted in both batch cultures and under dynamic conditions. To visualize cell adhesion and also exopolymers occuring in biofilms we used specific fluorescent dyes. During incubation of the microbes over several weeks we could visualize different types of EPS under the microscope. This observation fits perfectly to a concurrent viscosity increase of the surrounding media. Modelling approaches were applied to estimate the potential contribution of these effects on additional oil recovery. The observations including cell clumping, sorption and polymer production were geometrically quantified and the effect of the modifications on permeability profile and resulting flow characteristics was numerically investigated with fluid dynamic simulations of the petrophysical changes. The potential implications of the observed changes on EOR capability by conformance control and wettability modification were further estimated with analytical approaches. With the developed methods for visualization and modelling of the microbes and biofilms in both batch and dynamic conditions, we are able to monitor the clumping and sorption behavior of the cells, which will help to interprete data obtained during an upcoming MEOR field trial.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3