Biotreatment of Hydrate-Inhibitor-Containing Produced Waters at Low pH

Author:

Janson Arnold1,Santos Ana1,Hussain Altaf1,Judd Simon2,Soares Ana3,Adham Samer1

Affiliation:

1. ConocoPhillips Global Water Sustainability Center

2. Qatar University/Cranfield University

3. Cranfield University

Abstract

Summary With proper treatment to remove organics and inorganics, one can use the produced water (PW) generated during oil-and-gas extraction as process water. Biotreatment is generally regarded as the most cost-effective method for organics removal, and although widely used in industrial wastewater treatment, PW biotreatment installations are limited. This paper follows up to an earlier paper published in the SPE Journal (Janson et al. 2014). Although the earlier paper assessed the biotreatability of PW from a Qatari gas field from the summer season, this paper focuses on assessing the biotreatability of PW during the winter season [i.e., containing the thermodynamic hydrate inhibitor monoethylene glycol (MEG) and a kinetic hydrate inhibitor (KHI)]. Tests were conducted in batch and continuous reactors under aerobic mixed-culture conditions without pH control during 31 weeks. The results indicated that one could remove >80% of the chemical oxygen demand (COD) and total organic carbon (TOC) through biological treatment of PW with 1.5% MEG added. In contrast, biotreatment can remove only ≈43% of COD and TOC present in PW when 1.5% KHI was added as a hydrate inhibitor; 2-butoxyethanol, a solvent in KHI, is extremely biodegradable; it was reduced in concentration from >5000 to <10 mg/L by biotreatment; the KHI polymer though was only partially biodegradable. Cloudpoint tests conducted on PW with 1.5% KHI added showed only an 8°C increase in cloudpoint temperature (from 35 to 43°C). The target cloudpoint temperature of >60°C was not achieved. Although the feed to the reactors (PW with either KHI or MEG) was at pH 4.5, the reactors stabilized at a pH of 2.6, considered extremely acidic for aerobic bioactivity. The successful operation of an aerobic biological process for an extended period of time at a pH of 2.6 was unexpected, and published reports of bioactivity at that pH are limited. After extensive analytical tests, it was concluded that the pH decrease was caused by the production of an inorganic acid. A mechanism by which hydrochloric acid could be produced biologically was proposed; however, further research in this area by the academic community is recommended.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3