Affiliation:
1. IOR Research Institute
2. University of Calgary
Abstract
Abstract
A review of important issues in steam injection in naturally fractured reservoirs (NFRs) is presented. The effect of temperature on physical properties of crude oils and rocks and the thermo-chemical alteration of crude oil are discussed.
The recovery of oil from NFRs can be modelled as a two step process: first the oil is expelled from the matrix blocks through mechanisms that impose a pressure gradient within each matrix block and then it is swept through the fracture network to a production well by mechanisms that impose a pressure gradient within the fracture network. The recovery mechanisms associated with steam injection in NFRs and their characteristic times are presented. The most important recovery mechanism in matrix blocks is differential thermal expansion between oil and the matrix pore volume and the strongest mechanism in fracture network is the reduction of viscosity ratio (µo/µw). The matrix oil recovery mechanisms are relatively independent of oil gravity, making steam an equally attractive recovery process in fractured light and heavy oil reservoirs.
The mechanism and impact of CO2 generation during steam injection in carbonate reservoirs are discussed. The rate of CO2 generation is controlled by the rate of heat conduction from fracture into the matrix. For a specific reservoir the rate of heat conduction is a function of temperature and injection rate of steam and these can be optimized to make use of the in situ generated CO2.
Introduction
Heavy oil in naturally fractured carbonate reservoirs is an important resource, which accounts for one-third of total heavy oil worldwide. Many fractured reservoirs in the Middle East, former Soviet Union and Canada are candidates for thermal heavy oil recovery. Steam injection processes, which have been used extensively to recover heavy oil from non-fractured reservoirs, were not applied to fractured reservoirs until recently. This was primarily based on the belief that the injected steam would bypass the oil through the fractures and would be ineffective in recovering the oil. However, the results of experimental, theoretical and pilot tests which have appeared in the literature since early 1980s, show the feasibility of heavy oil recovery from fractured reservoirs using steam injection.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献