Delivering NET ZERO– A Case Study of Minimized Carbon Intensity Production Using Autonomous Inflow Control Technologies from a Remote Location in the Peruvian Amazon

Author:

Moradi Mojtaba1,García Willy2,Amado Percy Martin2,Konopczynski Michael Robert1

Affiliation:

1. Tendeka

2. Petrotal Peru

Abstract

Abstract Growing energy demand heightened by climate change challenges has seen the oil and gas industry tightly embrace smarter and more sustainable technologies. The motivation is to quickly grasp net-zero targets, while safely optimising oil-gas production. By its nature, the industry has the ingenuity to eliminate unnecessary carbon emissions. However, traditional development plans relied on the use of wells with minimal or no emphasis on the well completion in terms of optimum deliverability. This would produce a mixture of oil and excessive unwanted fluids such as water and/or gas which requires costly energy-intensive processes. Although the process has been optimized to some extent and often re-injects these unwanted fluids back to the reservoir, there has been not enough attention to the environmental impacts as these repetitive treatment processes of the fluids results in discharging excessive and unnecessary Greenhouse Gas (GHG) into the atmosphere. The issue is now widely recognized to be one of the industry challenges in its drive toward net-zero energy delivery. A case study of a heavy crude oil field with a strong water drive, located in a natural reserve in the Marañon basin of the Peruvian Amazon is presented. Here, the implementation of autonomous inflow control devices (AICDs) technology, through a knowledge management process, has made it possible to significantly reduce the volumes of water produced, which are reinjected again, thus generating significant savings in fluid lifting, treatment and energy consumption associated with the operations in this field. The study introduces a workflow that uses a publicly available GHG footprint estimator to evaluate the carbon intensity of different oil and gas field development plans. The estimator predicts the amount of GHG emitted from any individual operation, process and treatment involved in a field development from exploration to delivery at the gate of a refinery. Having this calculation enables the operators to recognize the major GHG emitter operations and optimise the process toward net zero using new technologies, methods and/or workflows. The workflow has then been applied to the field located in the Peruvian Amazon to illustrate the significant impact of flow control technologies on the reduction of GHG emissions and achieving net-zero targets. For example, the amounts of carbon intensity, GHG emission and energy consumption from the field have been estimated to been reduced by up to 56%, 64% and 78% respectively with AICD completions compared to a case of non-AICD completion such as stand-alone screen (SAS) was installed in the wells instead. This study provides the engineers with a workflow to quantify the impacts of the use of new technologies especially flow control devices. It also illustrates the significant role of flow control technologies in achieving net-zero production.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3