A New Model for Modern Production-Decline Analysis of Gas/Condensate Reservoirs

Author:

Sureshjani M. Heidari1,Gerami Shahab1

Affiliation:

1. IOR Research Institute, NIOC

Abstract

Summary Modern production-decline analysis is a robust technique for analysis of production data from a well under variable operating conditions. It uses production rates and flowing pressures to provide reliable estimates of recoverable reserves and fluid in place. The mathematics behind this technique is similar to that of pressure-transient theory; however, the focus is different. It deals with long-term variable production data instead of short-term constant-rate transient data. Using modern decline analysis for two-phase-flow conditions (e.g., gas/condensate reservoirs) is under question because of the single-phase-flow assumption in the development of a "material-balance time" function. This is a time function that converts any decline (e.g., exponential decline) to harmonic decline to account for variable operating conditions. The purpose of this work is to develop a model to use the concepts of modern techniques for analyzing production data of single-porosity gas/condensate reservoirs. For this purpose, the governing flow equation is linearized, using appropriately defined pseudopressure and pseudotime functions. Then, the solution is obtained for constant-well-rate condition. This is followed by employing the superposition theorem to account for variable well pressure/rate conditions, resulting in definition of two-phase material-balance pseudotime. The solution developed here is coupled with an appropriate material-balance equation and used to estimate the average reservoir pressure and original gas in place from analyzing production data. The dependency of relative permeability on capillary number and non-Darcy flow is included in the formulation. Verification of the proposed method is obtained with the analysis of synthetic production data using a series of fine-grid compositional numerical simulations over a typical range of gas/condensate-reservoir parameters.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3