A Simple Physics-Based Model Predicts Oil Production from Thousands of Horizontal Wells in Shales

Author:

Patzek Tadeusz W.1,Saputra Wardana1,Kirati Wissem1

Affiliation:

1. Ali I. Al-Naimi Petroleum Engineering Research Center, Physical Sciences and Engineering Division King Abdullah University of Science and Technology

Abstract

Summary Over the last six years, crude oil production from shales and ultra-deep GOM in the United States has accounted for most of the net increase of global oil production. Therefore, it is important to have a good predictive model of oil production and ultimate recovery in shale wells. Here we introduce a simple model of producing oil and solution gas from the horizontal hydrofractured wells. This model is consistent with the basic physics and geometry of the extraction process. We then apply our model thousands of wells in the Eagle Ford shale. Given well geometry, we obtain a one-dimensional nonlinear pressure diffusion equation that governs flow of mostly oil and solution gas. In principle, solutions of this equation depend on many parameters, but in practice and within a given oil shale, all but three can be fixed at typical values, leading to a nonlinear diffusion problem we linearize and solve exactly with a scaling "type" curve. After the initial 1−3 months of the generally unstable production, the scaled production rate declines as one over the square root of time early on and later it declines exponentially. The three governing parameters are the mean cumulative gas-oil ratio, GOR, the mass of saturated oil in place, M, and the characteristic time of pressure interference between each pair of consecutive hydrofractures, τ. This time depends on the effective formation permeability to oil, porosity, oil saturation, and the overall reservoir compressibility. GOR influences ultimate recovery, while the other two parameters determine where on the master curve production from a given well falls, depending on the M, and how it stretches or shrinks, depending on the τ. The distribution of τ also provides constraints on infill well locations. We implemented our automatic fitting procedure on a PC. In February 2017, there were 13,057 physical oil wells in the Eagle Ford shale. However, there were only 4,734 unallocated well records because of the peculiar reporting requirements in Texas, explained in the paper. This means that up to 71 physical wells can be reported as one unallocated lease production record in the Eagle Ford. Since we are only interested in black oil horizontal wells, we have selected 2,611 wells with at least 6 months of oil production, GOR less than 2500 scf/stb and liquid gravity less than 40° API. In practice, we match the production data for each well to a dimensionless master curve with the recovery factor, RF = Np/M, as the y-axis and the dimensionless time, t/τ, as the x-axis. The match relies on adjusting the unknown parameters M and τ. Here Np is cumulative mass production of oil and t is elapsed time on production in months. 429 selected wells were still in the early time flow regime with t/τ < 1. In the remaining 2,182 wells, hydrofractures started pressure interfering in less than 46 months on production. Our scaling of production of the 2,611 black oil wells and back allocating production to the corresponding physical wells gives the total EUR close to 440 million bbl of oil. Compared with reservoir simulation, the scaling curve method is more robust for thousands of wells and several orders of magnitude faster. Our method is especially useful for shale plays with limited access to reservoir data and it allows one to predict EURs of individual wells on a small laptop. Because we base our approach on the essential physics of oil recovery and on hydrofractured well geometry, the proposed method is highly predictive, while the popular hyperbolic decline curve analysis is not. To our knowledge, the proposed method is new.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3