Integrated Characterization and Simulation of the Fractured Tensleep Reservoir at Teapot Dome for CO2 Injection Design

Author:

Ouenes A..1,Anderson T..2,Klepacki D..1,Bachir A..1,Boukhelf D..1,Araktingi U..1,Holmes M..3,Black B..2,Stamp V..2

Affiliation:

1. Prism Seismic

2. RMOTC

3. Digital Formation

Abstract

Abstract This paper describes a workflow that fully utilizes the post-stack seismic attributes to derive reliable geologic and fracture models that are validated with multiple blind wells and reservoir simulation. The first step in the workflow is to run post-stack seismic processes, which includes volumetric curvature, post-stack inversion and spectral imaging. The second step consists of using the various post-stack seismic attributes to derive 3D geologic and fracture models. The third step is to use the derived models in a reservoir simulator to verify the validity of the models. This workflow was applied to the Tensleep reservoir at Teapot Dome in Wyoming. A large number of post-stack seismic attributes were generated in time and then depth converted within a 3D geocellular grid. These seismic attributes were used as input in REFRACTTM, Prism Seismic fracture modeling software, to create geologic and fracture models. An effective permeability was estimated by using a linear combination of the scaled fracture density and the matrix permeability. Two reservoirs unknowns were estimated by history matching in a black oil simulator: the strength of the aquifer and the scaling factor used to convert fracture density to fracture permeability. Water cut was matched at all the wells, confirming the reliability and accuracy of the derived geologic and fracture models and the usefulness of the workflow. With the derived dynamic model, a compositional simulator was used to test various CO2 injection rates and their effects on the breakthrough time.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3