Persistence in EOR - Design of a Field Trial in a Carbonate Reservoir using Solvent-based Water-Flood Process

Author:

Alkindi Abdullah1,Al-Azri Nasser1,Said Dhiya1,AlShuaili Khalid1,Te Riele Paul2

Affiliation:

1. Petroleum Development Oman

2. Shell Development Oman

Abstract

Abstract Primary and secondary recovery processes produce about one third of oil in place, leaving significant volumes behind. For low permeability and highly saline carbonate reservoirs, exploiting these resources is often challenging and unfeasible either technically and/or commercially. In this paper we discuss the application of an emerging EOR technique that has shown promising results in the lab. Di-Methyl Ether (DME) enhanced waterflood (DEW) is a process in which DME is added to injection water, which upon injection into the reservoir, it preferentially partitions into the remaining oil. As a result, it swells the oil and reduces its viscosity which significantly improves oil mobility in the reservoir. Several core-flood experiments conducted in tight carbonate plugs have shown incremental recoveries of up-to 20% post waterflood. Additionally, the process provides significant acceleration to oil production, which would otherwise take several pore volume of water injection. After successful PVT and core flood experiments, a field trial has been designed to de-risk this technology which if successful would add significant reserves. The pilot will be implemented in a tight carbonate reservoir that has been under waterflood. Some key uncertainties this pilot will address include solvent utilisation, oil incremental recovery, solvent back production and impact of geology on the process. This paper discusses the key physical mechanisms of the process, pilot design and challenges of full field considerations. In addition, it also highlights key considerations when designing solvent-based EOR applications. The paper also highlights the need of lab work to mitigate operational issues prior to implementation. Calibrated numerical models were used to generate full field profiles, which show the need for a well optimised pattern design to make such processes feasible

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3