Lessons Learned and Experiences Gained in Developing the Waterflooding Concept of a Fractured Basement-Granite Reservoir: A 20-Year Case Study

Author:

Dang Cuong T.Q.1,Chen Zhangxing John2,Nguyen Ngoc T.B.3,Bae Wisup3,Phung Thuoc H.4

Affiliation:

1. Calgary University

2. University of Calgary

3. Sejong University

4. Vietsovpetro Joint Venture

Abstract

Summary Naturally fractured reservoirs (NFRs) represent more than 20% of the world's oil and gas reserves. However, their characterization is complex and presents unique challenges in comparison with conventional reservoirs. It is immensely difficult to achieve the best results in the secondary-recovery process for NFRs. This paper presents a successful development of waterflooding to overcome the complex geological characterization of the White Tiger field, the largest fractured basement reservoir to date on the continental shelf of Vietnam. This reservoir has a complicated geological structure, with high heterogeneity, high temperature, and high closure stress. The total oil initially in place (OIIP) of this field reached nearly 4 billion bbl from 2000 m of oil-bearing thickness, and the field has been produced by more than 100 wells, 10 of which have flowed at the rate of approximately 1,000 B/D. The geological study and fractured model have been carefully investigated in both micro- and macroscale to improve waterflooding performance. The authors have analyzed the advantages and disadvantages of injection systems in this basement reservoir during 20 years of production history, and an artificial water buffer solution has been proposed to improve the waterflooding process. The authors have described the establishment and association of local artificial water buffer in the basement reservoir. An effective method to optimize the injected-water volume has also been discussed. Promising results from the White Tiger field have shown that the average reservoir pressure and total oil recovery have increased significantly in comparison with previous injection schemes. This paper presents useful guidelines to solve some typical problems of waterflooding in fractured basement reservoirs: What can be applied in waterflooding for a fractured basement reservoir? What is the optimal injection rate and injected volume for the fractured basement reservoir? How do we evaluate the probability of high water cut in production wells during the waterflooding process? How do we predict the rise of an artificial water/oil contact (AWOC)?

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3