Dynamic Properties of Dry and Water-Saturated Green River Shale Under Stress

Author:

Podio A.L.1,Gregory A.R.2,Gray K.E.1

Affiliation:

1. The U. Of Texas

2. Gulf Research And Development Co.

Abstract

Abstract Dynamic elastic properties of dry and water-saturated Green River shale samples were computed from compressional and shear-wave velocity measurements. P- and S-wave velocity measurements were made in three mutually perpendicular directions with respect to the bedding planes. Measurements were also made in several different directions by varying the angle between the bedding planes and the direction of propagation of the wave for angles of 0, 30, 45, 60 and 90 degrees. The oriented samples were subjected to both confining pressure and axial loads, in excess of the confining stress, in the direction of Propagation. In general, P- and S-wave velocities increased with increasing stress levels, with a corresponding increase in Young's modulus. Water saturation caused the P-wave velocity to increase and the S-wave velocity to decrease. Elastic moduli decreased upon saturation, except for Poisson's ratio, which increased, indicating some degree of weakening of the material. The samples showed a moderate degree of anisotropy; this was to be expected from the laminated nature and shallow occurence of Green River shale. Introduction This paper presents some results of an experimental determination of the elastic coefficients of anisotropic materials (in particular, finely layered rocks and minerals such as Green River shale) from measurements of dilatational and shear-ultrasonic-wave velocities. Ultrasonic techniques have been used extensively in nondestructive testing. Several methods have been proposed by McSkimmin, and some of these have been used successfully to measure ultrasonic velocities in rocks. Hughes and Cross, Wyllie et al., and Birch, developed pulse first-arrival techniques for the measurement of dilatational and shear velocities. Williams and Lamb used the method of cancellation of a traveling wave, which was later modified by Myers et al. and perfected by McSkimmin. Although this method is highly accurate, it has not been used as widely as the pulse-transmission methods recently reported by Jamieson and Hoskins, King, and Mattaboni and Schreiber. It has been common practice to use some form of crystal transducers, either quartz or ceramic, that has been cut or polarized in different directions in order to generate either compressional or shear waves. However, accurate determination of shear wave velocities has been difficult due to problems that arise in obtaining a pure shear wave from cross-polarized crystals, which usually also generate a small amount of compressional energy. As reported by Gregory, this energy can be seen as a long precursor preceding the sharp break of the shear first arrival. The need for generating pure shear waves led to interest in mode-conversion techniques, which are based upon conversion of the mode of vibration through wave reflection or refraction at a discontinuity. Arenberg showed that for certain materials and for certain angles of incidence it is possible to generate pure shear modes by reflection at a boundary. Jamieson and Hoskins used a pyrex glass-air interface for generating pure shear waves, and King used this method successfully for measuring shear-wave velocities in rocks. Gregory arrived at a similar result by refraction of a wave at an aluminum-oil interface. A plane compressional wave, traveling in the oil phase, is incident on the aluminum at an angle larger than the critical angle for compressional waves, and thereby generates a purely transverse, plane-polarized wave in the aluminum. During the last few years methods have been developed that allow the simultaneous determination of shear and compressional velocities in solids. SPEJ P. 389ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3