Water-in-Oil emulsions: Flow in Porous Media and EOR Potential

Author:

Fu Xuebing1,Lane Robert H.1,Mamora Daulat D.2

Affiliation:

1. Texas A&M University

2. Mamora & Associates

Abstract

Abstract High water content (>50%) water-in-oil (W/O) emulsions have been suggested as a drive fluid for recovery of heavy oil in high permeability reservoirs. High emulsion viscosity can provide sufficient mobility control and its oil-external nature enables a semi-miscible process while displacing crude oil. Initially crude oil itself was suggested as base oil for generating this type of emulsion, and both laboratory experiments and field pilot have demonstrated its high efficiency in recovering heavy crude. Recently used engine oil was suggested as a candidate for generating W/O emulsions for the same purpose, because of its better stability and more favorable viscosity. In this work a stable emulsion was generated by mixing used engine oil (40%) and brine (60%) under high shear. Then this emulsion was injected into sandstone cores (400 ~ 2400 md, 0.5 or 1 ft in length) at several different rates for periods of several days, to characterize its stability and flow properties while passing through porous media. Small amounts of water breakout were observed in the emulsion effluents. Higher values of water breakout were observed in lower permeability rock, at higher injection rate, and with longer core lengths. The the emulsion was also injected into sand-packed slimtubes (~8000 md) of 3-ft and 6-ft lengths, and less than 1% of free water was observed from the effluents at moderate injection rates, verifying good stability of this emulsion passing through high-permeability porous media. Pressure drops were found to be quite stable at any constant rate of injection for all corefloods, indicating no plug-off effect from the soot particles in the emulsion. Numerical simulations on emulsion flooding a homogeneous heavy oil reservoir were also conducted by simulating the emulsion as single-phase oil, and the breakdown of emulsion as a co-injection of water together with this oil. Results indicated significant improvement of displacement pattern and oil recovery compared to water flooding.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3