Material Balance Applied to Dynamic Reservoir-Surveillance Patterns

Author:

Batycky Rod P.1,Thiele Marco R.1

Affiliation:

1. Streamsim Technologies

Abstract

Summary Determining the remaining spatial oil-saturation distribution or current reservoir-pressure distribution for a mature (water, solvent, CO2) flood is a cornerstone of reservoir management for improving sweep and selecting infill-well locations. Decisions of these types are typically supported by reservoir flow simulation models that have been calibrated to historical injection/production data. In this paper, we present a novel-pattern material-balance (PatMB) approach to estimating remaining fluids in place as an alternative to flow simulation. First, we use the historical injection/production volumes to solve for streamlines and streamline-derived pattern metrics such as well-allocation factors and injector/producer-pair reservoir pore volumes (PVs). Then, we apply material balance on these volumes over time to estimate the remaining oil in place (ROIP) and pressures at the end of history. Resembling reservoir simulation, the method considers changing well patterns through time, requires a 3D static geological model, and yields 3D saturation distributions of oil, water, and gas. However, unlike reservoir simulation, because historical injected and produced voidage terms are honored, calibration is only possible through the 3D distribution of PV and fluids initially in place. We present results for the Berrymoor-pattern waterflood and show that the ROIP distribution is a strong function of the original-oil-in-place (OOIP) distribution, well locations, and historical oil, gas, and water production/injection volumes. For this case, the ROIP distribution is almost insensitive to interwell permeability distributions, suggesting that the primary focus when estimating ROIP with the PatMB approach is to ensure a good estimate of OOIP, major flow units, and the correct injection/production data. We also compare our method to reservoir flow simulation for a large water/hydrocarbon miscible flood (HCMF), and we observed that the ROIP maps compare well, with both methods highlighting similar areas for potential infill locations. However, the remaining-gas-in-place maps differed with PatMB, showing a more diffused distribution than flow simulation of the gas. We attribute the difference to the fact that PatMB does not account for transport effects such as separation of the phases caused by density differences.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3