X-Ray Computerized Tomography

Author:

Wellington S.L.1,Vinegar H.J.1

Affiliation:

1. Shell Development Co.

Abstract

Distinguished Author Series articles are general, descriptiverepresentations that summarize the state of the art in an area of technology bydescribing recent developments for readers who are not specialists in thetopics discussed. Written by individuals recognized as experts in the area, these articles provide key references to more definitive work and presentspecific details only to illustrate the technology. Purpose: to informthe general readership of recent advances in various areas of petroleumengineering. Summary. Computerized tomography (CT) is a new radiological imagingtechnique that measures density and atomic composition inside opaque objects. Arevolutionary advance in medical radiology since 1972, CT has only recentlybeen applied in petrophysics and reservoir engineering. This paper discussesseveral petrophysical applications, including three-dimensional (3D)measurement of density and porosity; rock mechanics studies; correlation ofcore logs with well logs; characterization of mud invasion, fractures, anddisturbed core; and quantification of complex mineralogies and sand/shaleratios. Reservoir engineering applications presented include fundamentalstudies of CO2 displacement in cores, focusing on viscous fingering, gravitysegregation, miscibility, and mobility control. Introduction X-ray CT is a radiological imaging technique first developed in GreatBritain in 1972 by Hounsfield. CT revolutionized medical radiology by producinganatomical images of extraordinary accuracy and clinical detail. Hounsfield wasawarded the Nobel prize in medicine in 1979 for his contributions. Tounderstand the advantages of CT, first consider conventional X-ray radiography, e.g., chest X-rays. Conventional radiographs view an object from only one angleso that shadows from all irradiated matter along a ray path are superimposed onone another (Fig. 1). The attenuation information along the ray path isaveraged together so that localized regions with small attenuation contrast areobscured. By comparison, CT scanners generate cross-sectional image slicesthrough the object by revolving an X-ray tube around the object and obtainingprojections at many different angles (Fig. 2). From a set of these projections, a cross-sectional image is reconstructed by a back-projection algorithm in thescanner's computer. The cross-sectional image of attenuation coefficients isdisplayed on a cathode-ray-tube (CRT) monitor. The beauty of CT is thatattenuation differences as small as 0.1% can be measured accurately within aninterior region of 2 mm(2) or less. With a fourth-generation medical scanner, the entire imaging process is completed in seconds. CT images (3D) can bereconstructed from sequential cross-sectional slices taken as the sample ismoved through the scanner (Fig. 3). Once this 3D data set has been acquired, any plane through the object can be viewed. For example, Figs. 4A and 4B showhow vertical and horizontal slices can be used to separate gravity and viscouseffects during tertiary gas injection. Instrumentation CT scanners have undergone considerable development since 1972. First-generation scanners used a single pencil-beam source and detectorarrangement. Second-generation scanners improved image quality by use ofmultiple detectors in a translate/rotate configuration. A large improvement inspeed occurred in the third-generation scanners, which used a rotate-onlyfan-beam geometry with source and detectors rotated together around the object. Finally, the fourth-generation scanners use a fan-beam geometry with sourcerotating within a fixed ring of high-efficiency detectors. The second- throughfourth-generation medical CT scanners are satisfactory for petroleumengineering applications because they have adequate X-ray energy and dose forscanning core material. Used medical CT scanners are readily available at asmall fraction of the original cost. JPT P. 885^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3