Seawater-Based Fracturing Fluid: Driving Efficiency in Offshore Operations in the Clair Field

Author:

Bird Anastasia1,Gomaa Ahmed M.1,Mirakyan Andrey1,Stanley Reginald2,Eswein Edmund2

Affiliation:

1. bp

2. SLB

Abstract

AbstractDriven by its wide range of matrix permeability, the Clair field, located on UK Continental Shelf, requires high proppant concentrations and fracture conductivity for economical production uplift. Borate crosslinked guar-based fracturing fluids were selected because of their reliability, environmentally friendly nature, good recovery with the ability to carry proppant and maintain viscosity after mechanical shearing. In addition, these fluids have a strong historic record in the North Sea and a relatively low cost. Fresh water is typically used as a base for this fracturing fluid type. However, with novel fracturing completions that allow fracturing multiple zones continuously, fresh water becomes the logistically limiting factor. Seawater can be considered as an enabler for such completions. However, seawater presents a technical and economic challenge for such fluids due to cation precipitation at high pH and the need for an elevated concentration of a high-cost scale inhibitor. Due to strict environmental regulations in the North Sea, availability of approved scale inhibitors is limited.A North Sea approved scale inhibitor additive has been identified to prevent the precipitation of divalent cations at high pH. However, the volume required for this scale inhibitor was relatively large, leading to prohibitively high costs of the subject fluid. A strong relationship between the final fluid pH and the needed amount of scale inhibitor was observed. Therefore, this study aims to find the balance between scale inhibitor concentration, fluid pH, and viscosity stability to enable an economical seawater based borate fracturing fluid.A dynamic scale loop test was conducted to confirm the scale precipitation and the need for scale inhibitors. Thereafter, several visual compatibility tests were conducted at different loading of scale inhibitors and fluid pH. Results show a positive correlation between the concentration of high-pH buffer and the corresponding amount of scale inhibitor. Initially, a high loading of scale inhibitor was required due to the concentration of high-pH buffer to keep the fluid stable. However, reducing the high-pH buffer to a lower value can significantly reduce the required concentration of scale inhibitor. A series of rheological tests were conducted using a high-pressure high-temperature (HPHT) viscometer to confirm that the new amount of high-pH buffer is enough to keep the fluid stable at downhole conditions. Finally, a series of coreflood tests were conducted to measure the regained permeability using outcrop cores and formation cores to confirm no damage due to the use of seawater.The study presents a solution that meets technical and economic requirements to enable efficient hydraulic fracturing operations and minimize scale risks where adequate fresh water supply is not readily available. Rheology, coreflood, and compatibility test results demonstrate that seawater can be used as a base fluid for fracturing treatments.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3