Improving Erosion Assessment Through High-Fidelity CFD Simulation Methods

Author:

Barton Neil1,Lewis Mike1,Emmerson Paul1

Affiliation:

1. Xodus Group Ltd

Abstract

Abstract Pipework erosion is becoming an increasing issue within the oil and gas industry. New, high-rate subsea wells and associated topsides tie-ins are particularly vulnerable to erosion, and the consequences of failure are considerable. Accurate prediction methods can be used to improve pipework design, inspection regimes and operating limits. This paper assesses the accuracy of erosion predictions made using simple equations, conventional computational fluid dynamics (CFD) erosion simulations and high-resolution CFD methods. Correlation-based prediction methods, such as those in DNV RPO501, are effective for screening purposes, but they only deal with simple pipe fixtures such as single bends. CFD is often used to assess more complex layouts such as manifolds or flow lines. However, the standard CFD approach typically assumes a steady state flow and a homogeneous multiphase mixture. Recent comparison with large-scale tests has shown that CFD can effectively predict the flow-induced vibration forces caused by liquid-gas mixtures. In this work, the same liquid-gas modelling techniques have been used, with an additional sand particle phase, to assess pipework erosion. In wet gas flow, a thin annular liquid film typically coats the pipe walls. Test work has shown that wall-films can significantly reduce erosion rates by slowing and redistributing sand impacts. The homogeneous approach used in most correlations and typical CFD studies ignores this effect and these methods tend to over-estimate erosion rates. This ultimately results in overly-conservative pipework design and production limits. It was found that high-fidelity CFD simulations that explicitly model the liquid, gas and sand correctly predict a reduction in erosion when a liquid film is present. The predicted flow regime is consistent with physical observations and the gas-liquid-sand model more closely predicts experimental test results. This work demonstrates the benefits of explicitly modelling separate gas, liquid and sand phases, comparing predictions with published test data and showing the effects of higher-resolution simulations in a typical subsea pipework configuration.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3