Progress of Microbial Enhanced Oil Recovery in China

Author:

Guo Hu1,Li Yiqiang1,Yiran Zhao2,Wang Fuyong1,Wang Yansheng1,Yu Zhaoyan1,Haicheng She3,Yuanyuan Gu1,Chuyi Jin1,Xian Gao1

Affiliation:

1. China University of Petroleum (Beijing)

2. Xi'an Petroleum University

3. Yulin University

Abstract

Abstract Compared with other EOR technique like gas flooding, chemical flooding, and thermal production in heavy oil, the prominent advantages MEOR has environment-friendliness and lowest cost. MEOR has various applications not only in sandstone but also carbonate reservoirs, light oil reservoirs as well as heavy oil reservoirs. This paper mainly reviewed progress in laboratory studies and MEOR field tests including six big successful field tests in China. Present focus on MEOR has been changed from qualitative analysis to quantitative characterization, and high-tech like 16S rDNA and advanced method has being tried to investigate its mechanism on molecular level. The mechanism of microbial effects on making oil emulsification and wettability alternation was the main interest of recent study. Application of high resolution mass spectrum (HRMS) on MEOR mechanism has revealed the change of polar compound structures before and after oil degradation by the microbial on molecular level. MEOR could be divided into indigenous microorganism and exogenous microorganism flooding. The key of exogenous microorganism flooding, was to develop effective production strains, and difficulty lies in the compatibility of microorganism, performance degradation and high cost. Indigenous microorganism flooding, has good adaptation but no follow up process on production strains development, thus it represents the main direction of MEOR. China has some of the most complex and diversified reservoirs and was notable for the scale of MEOR field tests since there has been six big MEOR field tests since 1998 after many precious small-cale tests. All field tests have shown positive results in incremental oil and water cut reduction. The combination of indigenous microorganism and exogenous microorganism flooding was adopted because of the cost and difficulty of exogenous microorganism flooding. MEOR screening criteria for reservoirs has been improved. The parameters include temperature, salinity, oil viscosity, permeability, porosity, wax content, water cut, and microorganism concentration in which production fluid, temperature, and salinity were the most important three parameters. MEOR was suitable in reservoirs of which temperature lower than 80°C, salinity less than 100,000 ppm, and permeability above 50 mD. MEOR experience and study in reservoirs of 120°C, salinity more than 350,000ppm and permeability of 10 mD has expanded the reservoirs range suitable to carry out MEOR.

Publisher

SPE

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3