Alternating Conditional Expectation (ACE) Algorithm for Permeability Estimation in Bahariya Formation

Author:

Mokhtar Ali Hesham1,Abu El Ela Mahmoud2,El-Banbi Ahmed3

Affiliation:

1. General Petroleum Company

2. Cairo University

3. The American University in Cairo

Abstract

Summary The nonparametric transformation is a data-driven technique, which can be used to estimate optimal correlations between a dependent variable (response) and a set of independent parameters (predictors). This study introduces a systematic methodology using the nonparametric transformation concept and the alternating conditional expectation (ACE) algorithm to estimate the effective gas permeability using conventional logs and the core data. The ACE algorithm was employed in the current work using the MATLAB® (The MathWorks, Inc., Natick, Massachusetts, USA) code and the open-source GRaphical ACE (GRACE) software (Xue et al. 1997) for deriving the optimal nonparametric correlations for predicting the permeability. The methodology was applied to a heterogeneous formation [Bahariya (BAH)] in Egypt to understand its characteristics and predict its permeability more accurately. The BAH Formation is considered one of the main sources for oil production throughout the Western Desert (WD) of Egypt. The cumulative oil production from the BAH Formation is estimated to be approximately 40% of the total WD production. The reservoir characteristics of the BAH Formation range from highly permeable to tight sandstone interbedded with shale and siltstone. It usually depicts low-resistivity and low-contrast (LRLC) log behavior. Thus, regional and accurate determination of the reservoir permeability for the different rock units of the BAH Formation across the WD is a challenge. Conventional well log data from approximately 100 cored wells and corresponding 5,500 core measurements were used to provide a regional permeability correlation that can be used in a large number of reservoirs. The methodology of this work included two main steps: Applying the nonparametric transformation technique to identify the collective log responses for deriving optimal correlation Predicting the permeability profiles using the selected log responses The model was applied to many wells that address different petrophysical characteristics of the BAH Formation. The established permeability profiles showed reliable correlation coefficients relative to the measured core data. The correlation coefficient was 0.893 for the training data points (75% of the collected database) and 0.913 for the testing data points (25% of the collected database). In addition, the mean absolute percentage error (MAPE) between the predicted and the measured permeability for the training and testing data points were 5.93 and 4.14%, respectively. Permeability prediction using ACE is compared with other techniques such as k-ϕ crossplots, multiple linear regression (MLR), Coates, and Wyllie-Rose correlations. This work is considered an original contribution to present regional permeability prediction correlations using the conventional well logs for reservoir characterization and simulation applications. The ACE algorithm was successfully applied to the BAH Formation and proved its capability to identify the best predictors that are required to establish a rigorous model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3