A Unified Thermal-Reactive Compositional Simulation Framework for Modeling CO2 Sequestration at Various Scales

Author:

Wapperom M.1,Lyu X.2,Nichita D. V.3,Voskov D.4

Affiliation:

1. TU Delft

2. China University of Petroleum Beijing

3. University of Pau

4. TU Delft, Stanford

Abstract

AbstractIn this work, we present a unified framework for the simulation of CO2 sequestration problems at various time and space scales. The parametrization technique utilizes thermodynamic state-dependent operators expressing the governing equations for the thermal-compositional-reactive system to solve the nonlinear problem. This approach provides flexibility in the assembly of the Jacobian, which allows straightforward implementation of advanced thermodynamics. We validate our simulation framework through several simulation studies including complex physical phenomena relevant to CCUS. The proposed simulation framework is validated against a set of numerical and experimental benchmark tests, demonstrating the efficiency and accuracy of the modeling framework for CCUS-related subsurface applications. Important physical phenomena resulting from the complex thermodynamic interactions of CO2 and impurities with reservoir fluids can be accurately captured now in detailed dynamic simulation. The investigated simulation scenarios include a reproduction of lab experiments at the core scale, investigation of macro-scale analog model and simulation of large-scale industrial application. The simulation time can also span from hours to years among various applications. Complex thermal-compositional-reactive phenomena can be addressed at each of these space and time scales. The unified thermodynamic description allows us to perform all these simulations for a reasonable CPU time due to advanced parametrization techniques and efficient GPU capabilities in our in-house reservoir simulator DARTS.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3