Stiff String Casing Design with 3D Orientated Casing Wear

Author:

Nobbs Benjamin1,Aichinger Florian1

Affiliation:

1. Helmerich & Payne

Abstract

Abstract The forces and stresses along a casing string are modelled using a stiff string torque and drag model. A post analysis of casing loads and stresses, considering wellbore tortuosity and centralisation is performed in addition to the effect of 3D orientated casing wear. A post analysis case study is presented to show the resulting effect on axial, burst, collapse and VME safety factor as well as VME body and connection design envelopes. While running in hole (RIH) a tubular, the industry standard is to assume a smooth wellbore when performing a torque and drag calculation. The drilling process can cause significant local doglegs and ultimately increase the tortuosity of the wellbore. When applying a soft-string torque and drag model, it is possible that the stiffness, radial clearance, and high frequency surveys are not directly considered. The stiff string torque and drag and buckling model can model these effects, as well as the addition of rigid and flexible centralisers. This study involves the comparison of different casing design load cases, using the actual tortuosity of a drilled wellbore considering a 3D orientated casing wear. The results show that there can be noticeable differences in overall axial stress with the addition of tortuosity. The stiff string model can directly calculate the additional bending stresses experienced by the tubular and this additional stress can be particularly prevalent while RIH casing with centralisers and high tortuosity. The reduction in API and VME stress envelope is also quantified using a 3D orientated casing wear model. A better understanding of axial stress state reduces risk of well integrity issues and can pinpoint areas along the casing in which special care must be taken during well intervention. This paper will show the benefits of using a stiff string torque and drag model during casing design. Highly tortuous wellbores, especially ERD and HPHT wells, may exhibit stresses that are vastly different than assumed during preplanning phase. The design API/VME envelope may also be reduced due to casing wear.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3