Identification of Downhole Conditions in Sucker Rod Pumped Wells Using Deep Neural Networks and Genetic Algorithms (includes associated discussion)

Author:

Abdalla Ramez1,El Ela Mahmoud Abu2,El-Banbi Ahmed1

Affiliation:

1. The American University in Cairo

2. Cairo University

Abstract

Summary In this paper, deep learning artificial neural networks (ANNs) are used to analyze the features of downhole dynamometer cards and identify the sucker rod pumping system conditions. A description model for the dynamometer cards, using Fourier descriptors, was established for card feature extraction. Then, neural networks were trained to generate failure prediction models to recognize downhole faults of the rod pumping systems. The failure prediction models were validated and tested with a large database of previously interpreted cards. The proposed model is trained by using 4,467 dynamometer cards—29.2% of these cards represent sucker rod pumping systems of normal conditions, while the rest (70.8%) represent faulty sucker rod pumping systems. Genetic algorithms (GAs) were used to search for the best deep ANN structure that gives highest accuracy for the testing data. Accuracy of the proposed ANN model was measured with 1,915 cards that were not used in developing the ANN. The proposed model identified the sucker rod system failure successfully with very high accuracy (99.69%).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3