Innovative TCP-ESP Under Balance Perforation Using Hydraulic Packer and Firing Head

Author:

Sayed Mohamed1,Luca Napoleone2,Naser Shimaa1,Salah Ahmed1,Amr Karim1

Affiliation:

1. Agiba Petroleum Company

2. ENI

Abstract

AbstractThe objective in any perforated completion is to maximize the productivity index in a cost effective manner, which is to increase the flow rate for a given driving force (draw down) or to minimize the draw down for a given rate that could be achieved through minimizing the total well skin effect.Underbalance perforation through Tubing Conveyed Perforating (TCP) system is one of the best practices to ensure less damage to the perforation tunnels (perforating skin) leading to increased well productivity. However, it is very challenging in cases of completions using Electrical Submersible Pump's (ESP) to maintain productivity with undamaged reservoir by preventing any contact between reservoir and completion fluid and achieve the above simultaneously with safe well control during ESP deployment. Otherwise, the alternative solution is to perforate over balance using casing guns or run TCP string in single run then kill the well after perforation in order to install the ESP completion meanwhile both alternative ways lead to damage in the perforated tunnels.As reducing operating costs is a must, maximizing well productivity, and minimizing wellbore clean-up time, an innovative solution was designed and successfully implemented for perforating artificially lifted wells in static underbalanced condition meanwhile installing ESP completion in single run without killing the well. It combines the use of TCP system containing special hydraulic firing head (delaying technique with orifice and chamber filled with oil) equipped with hydraulic packer with on-off tool. TCP gun string with the hydraulic packer has been run by tubing and set hydraulically against the required intervals, then the ESP has been separately installed and the guns has been activated through a hydraulic firing head for a shoot-and-stay operation. The static underbalance condition has been created by the ESP thanks to the delayed firing time.After this operation, the well has been directly lined up to production flow-line with minimal wellbore clean-up time. The combination of static underbalanced perforation with deep penetration charges which is able to bypass invasion zone with depth of penetration more than 65 inch, can create a clean perforation tunnel, and significantly reduce the post-perforating damage by killing fluid, and finally maximize the well productivity. Despite the challenging reservoir conditions (Depth= 10200 FT, Pressure=3850 Psi, Temperature= 28544 deg. F), the Productivity Index (PI) of the wells were three times compared to the offset wells.This job has been performed by Agiba Petroleum Company, one of the main operators in Western Desert of Egypt, employing this combined TCP-ESP technique which has resulted in significant savings in cost as well as rig time and increased operating efficiency. This paper summarizes the practical experiences gained during the development and deployment of this integrated technique, in addition to an evaluation of the impact compared to the conventional perforation techniques through ESP downhole sensor data and well modelling.

Publisher

SPE

Reference6 articles.

1. Characterization of the Jet Perforation Crushed Zone by SEM and Image Analysis;Asadi;SPEFE,1994

2. X-Ray CT Observations of Flow Distribution in a Shaped Charge Perforation;Halleck,1992

3. Perforating solutions

4. Well Testing;Lee;Society of Petroleum Engineers of AIME,1982

5. An Investigation of the Damaged Zone Created Perforating;Pucknell,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3