Analysis of Asymmetric Tool-Joint Wear while Drilling Long Horizontal Sections

Author:

Cayeux E..1,Skadsem H. J.1,Carlsen L. A.1,Stokland L. M.2,Cruikshank S..2

Affiliation:

1. IRIS

2. Wintershall Norge

Abstract

Abstract While drilling horizontal sections, an operator experienced tool-joint wear, which in extreme cases was one-sided, necessitating the replacement of many drill-pipes to minimize the risk of drill-string failure. Since there were no observable signs of the wearing process, the strategy has been to trip midway through the section to inspect the pipes. With the goal to drill the section in one run, an investigation of the root causes of the abnormal wear has been started. To check whether some hidden signal patterns could help detecting under which circumstances the tool-joints were worn out, a play back of some of those drilling operations has been undertaken with specific attention to whether transient hydraulic and mechanical models could help differentiate abnormal measurement signatures. In parallel, it has been investigated with computational fluid dynamic (CFD) software whether synchronous whirl of tool-joints would generate a specific pressure signature that could easily be recognized. As the asymmetrical wear of the tool-joints indicated the presence of synchronous whirl, it has also been analyzed how side forces were distributed along the drill-string. Neither the playback nor the CFD analyses pointed to conditions leading to tool-joint wear. On the other hand, the side force analysis showed that because of extensive directional work linked to geosteering, reaction forces on the tool-joints were very unevenly distributed on the first 500m of drill-string behind the BHA. However, the distribution of the positions of the high and low side forces changed radically for different bit positions. Numerous hard-stringers were encountered while drilling which suggests that the irregular distributions of side-forces on the string have been maintained for longer periods of time. As a result, these conditions have allowed drill-string whirl to be kept sufficiently steady with the consequence of severely damaging the tool-joints. Mathematical modelling of the drill-string behavior can help determining the critical rotational speed as a function of the weight on bit by which whirl can take place. With this information at hand, it is then possible to give concrete advice to the drilling team on which drilling parameters to use to minimize the risk of tool-joint wear.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3