Overcoming Extreme Technical and Logistical Challenges to Successfully Cleanout 76,000-LBM Proppant

Author:

Craig Steven1,Soodsakorn Patcharapun1

Affiliation:

1. Baker Hughes

Abstract

Abstract A fracture treatment in offshore Tunisia screened out leaving over 76,000-lbm proppant in the wellbore. The well was significantly under-hydrostatic. The platform was small and had limited deck space and low capacity cranes. The completion incorporated chrome tubulars with a history of causing abrasion failure to coiled tubing strings. The challenge was to efficiently and safely clean out the proppant with coiled tubing (CT). A prior cleanout campaign had been conducted with concentric CT and jet pumps. An initial design focused on repeating this method. The engineering analysis had to account for fluid and nitrogen pumping being conducted from a supply vessel, limited nitrogen volume, low the solids return rate due to surface handling limitations, and no fluid discharge permitted to sea. A combined engineering, logistical study, laboratory testing and risk assessment was undertaken over the course of three months. Engineering utilized advanced cleanout modelling software to review concentric CT cleaning, forward cleaning (with and without optimizing cleaning Bottom Hole Assembly (BHA) and with various sizes of CT), and reverse circulating. Logistics analyzed the overall operation time, fluid and nitrogen requirements and the number of boat trips to replenish/change well returns and nitrogen. Three additional challenges were present. First, proppant could have packed off creating difficulties for some of the processes under review. Laboratory testing was conducted and confirmed this would not be a concern. Second, the well was sour and considerations for protecting the CT string and handling hydrogen sulfide (H2S) in the return stream were required. Third, CT string optimization was required to reduce potential abrasion failures. Avoiding CT failure was paramount as the string would be boat spooled onto the platform and any failure would severely impact operating time and project finances. The chosen method was primarily fluid only reverse circulating when cleaning above the formation, changing to forward circulated two phase operation when close to the formation. The downhole pressure gauge in the completion provided early warning of lost returns or of gas kicks. The operation was successfully, efficiently and safely completed in August 2019. The well was handed back to production 8 days ahead of schedule. The paper will cover the complete concept and detail design, execution and post-job analysis.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3