The Role of Machine Learning in Drilling Operations; A Review

Author:

Noshi Christine I.1,Schubert Jerome J.1

Affiliation:

1. Texas A&M university

Abstract

Abstract Drilling problems such as stick slip vibration/hole cleaning, pipe failures, loss of circulation, BHA whirl, stuck pipe incidents, excessive torque and drag, low ROP, bit wear, formation damage and borehole instability, and the drilling of highly tortuous wells have only been tackled using physics-based models. Despite the mammoth generation of real-time metadata, there is a tremendous gap between statistical based models and empirical, mathematical, and physical-based models. Data mining techniques have made prominent contributions across a broad spectrum of industries. Its value is widely appreciated in a variety of applications, but its potential has not been fully tapped in the oil and gas industry. This paper presents a review compiling several years of Data Analytics applications in the drilling operations. This review discusses the benefits, deficiencies of the present practices, challenges, and novel applications under development to overcome industry deficiencies. This study encompasses a comprehensive compilation of data mining algorithms and industry applications from a predictive analytics standpoint using supervised and unsupervised advanced analytics algorithms to identify hidden patterns and help mitigate drilling challenges. Traditional data preparation and analysis methods are not sufficiently capable of rapid information extraction and clear visualization of big complicated data sets. Due to the petroleum industry's unfulfilled demand, Machine Learning (ML)-assisted industry workflow in the fields of drilling optimization and real time parameter analysis and mitigation is presented. This paper summarizes data analytics case studies, workflows, and lessons learnt that would allow field personnel, engineers, and management to quickly interpret trends, detect failure patterns in operations, diagnose problems, and execute remedial actions to monitor and safeguard operations. The presence of such a comprehensive workflow can minimize tool failure, save millions in replacement costs and maintenance, NPV, lost production, minimize industry bias, and drive intelligent business decisions. This study will identify areas of improvement and opportunities to mitigate malpractices. Data exploitation via the proposed platform is based on well-established ML and data mining algorithms in computer sciences and statistical literature. This approach enables safe operations and handling of extremely large data bases, hence, facilitating tough decision-making processes.

Publisher

SPE

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3