Openhole Multistage Completion Evaluation Incorporating Deployment of Downhole Shut-in Tool Application in Sour Carbonate Gas Wells, Field Application

Author:

Espinosa Mauricio1,Leal Jairo1,Zbitowsky Ron1,Pacheco Eduardo2

Affiliation:

1. Saudi Aramco

2. Halliburton

Abstract

Abstract This paper highlights the first successful application of a field deployment of a high-temperature (HT) downhole shut-in tool (DHSIT) in multistage fracturing completions (MSF) producing retrograde gas condensate and from sour carbonate reservoirs. Many gas operators and service providers have made various attempts in the past to evaluate the long-term benefit of MSF completions while deploying DHSIT devices but have achieved only limited success (Ref. 1 and 2). During such deployments, many challenges and difficulties were faced in the attempt to deploy and retrieve those tools as well as to complete sound data interpretation to successfully identify both reservoir, stimulation, and downhole productivity parameters, and especially when having a combination of both heterogeneous rocks having retrograde gas pressure-volume-temperature (PVT) complexities. Therefore, a robust design of a DHSIT was needed to accurately shut-in the well, hold differential pressure, capture downhole pressure transient data, and thereby identify acid fracture design/conductivity, evaluate total KH, reduce wellbore storage effects, properly evaluate transient pressure effects, and then obtain a better understanding of frac geometry, reservoir parameters, and geologic uncertainties. Several aspects were taken into consideration for overcoming those challenges when preparing the DHSIT tool design including but not limited to proper metallurgy selection, enough gas flow area, impact on well drawdown, tool differential pressure, proper elastomer selection, shut-in time programming, internal completion diameter, and battery operation life and temperature. This paper is based on the first successful deployment and retrieval of the DHSIT in a 4-½" MSF sour carbonate gas well. The trial proved that all design considerations were important and took into consideration all well parameters. This project confirmed that DHSIT devices can successfully withstand the challenges of operating in sour carbonate MSF gas wells as well as minimize operational risk. This successful trial demonstrates the value of utilizing the DHSIT, and confirms more tangible values for wellbore conductivity post stimulation. All this was achieved by the proper metallurgy selection, maximizing gas flow area, minimizing the impact on well drawdown, and reducing well shut-in time and deferred gas production. Proper battery selection and elastomer design also enabled the tool to be operated at temperatures as high as 350 °F. The case study includes the detailed analysis of deployment and retrieval lessons learned, and includes equalization procedures, which added to the complexity of the operation. The paper captures all engineering concepts, tool design, setting packer mechanism, deployment procedures, and tool equalization and retrieval along with data evaluation and interpretation. In addition to lessons learned based on the field trial, various recommendations will be presented to minimize operational risk, optimize shut-in time and maximize data quality and interpretation. Utilizing the lessons learned and the developed procedures presented in this paper will allow for the expansion of this technology to different gas well types and formations as well as standardize use to proper evaluate the value of future MSF completions and stimulation designs.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STUDY OF PACKER'S SWELLING RATE IN DIFFERENT LIQUIDS;PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3