An Experimental Study of Multiphase Behavior for n-Butane/Bitumen/Water Mixtures

Author:

Gao Jianyi1,Okuno Ryosuke2,Li Huazhou Andy1

Affiliation:

1. University of Alberta

2. University of Texas at Austin

Abstract

Summary Steam/solvent coinjection has been studied and pilot tested as a potential method to improve steam-assisted gravity drainage (SAGD) for bitumen recovery. Reliable design of coinjection requires reliable pressure/volume/temperature (PVT) data for bitumen/solvent/water mixtures, which are scarce and fragmentary in the literature. The main objective of this research was to present a new set of PVT and multiphase data for n-butane/Athabasca-bitumen/water mixtures at pressures up to 10 MPa and temperatures up to 160°C. Experiments were conducted with a conventional PVT apparatus. The data presented include multiphase equilibria up to four coexisting phases and liquid densities for 100% bitumen, two mixtures of n-butane/bitumen, and one mixture of n-butane/bitumen/water. Liquid/liquid separation of hydrocarbons was experimentally observed at the n-butane concentration of 97 mol% in the n-butane/bitumen system with/without water, for a wide range of temperatures at operating pressures for expanding-solvent SAGD (ES-SAGD). This may indicate the limited solubility of n-butane in bitumen even when a high level of accumulation of n-butane takes place near a chamber edge in ES-SAGD for Athabasca bitumen. The multiphase transition that involves appearance/disappearance of the vapor phase was observed to occur near the vapor pressure of n-butane or its extension. Such phase transition occurs at a higher pressure in the presence of water, because of its vapor pressure, than in the absence of water at a given temperature. This is the first time four coexisting phases are reported for n-butane/Athabasca-bitumen/water mixtures at temperature/pressure conditions relevant to ES-SAGD.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3