Automated Procedure for Quantifying ISIP and Friction Losses from Stage by Stage Hydraulic Fracture Treatment Falloff Data

Author:

Alwarda Fahad1,Liu Guoqing1,Nikolaou Michael1,Ehlig-Economides Christine1

Affiliation:

1. University of Houston

Abstract

Abstract While diagnostic fracture injection tests (DFIT) data is relatively rare, most hydraulic fracture treatment stages in multiple transverse fracture horizontal wells (MTFHWs) follow pressure and rate data during pumping with several minutes of pressure falloff data after the end of pumping. Recent papers have shown value in applying analysis developed for DFIT data to hydraulic fracture treatment falloff (HFTF) data. As is often the case with routinely acquired operational data, the time required for analyzing HFTF datasets for each of the treatment stages in a long horizontal well may be prohibitive. This paper offers an automated analysis procedure that starts from standard treatment pressure and rate data and produces estimates for wellbore and perforation friction loss, near wellbore tortuosity friction loss, and the instantaneous shut in pressure (ISIP). Steps in the automated procedure include isolating the HFTF data from the rest of the hydraulic fracture treatment data (which is typically subject to hydraulic hammer), applying an optimized low-pass filter (LPF), and computing the friction and ISIP estimates by automating a previously published graphic procedure. We employ the automated analysis on field data that was previously analyzed by hand. Then we compare and contrast between the two analyses. The comparison between manual and automatically analyzed fracture treatment falloffs demonstrates that the automated procedure reproduces the previous analyses except in a few cases that pose special challenges to any analysis. The new field dataset results demonstrate the approach is practical for field application. Variations in friction loss and ISIP estimates along MTFHWs provide data useful for well and pad completion design decisions related to perforating strategies, and fracture and well spacing.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3