Uncertainty Reduction By Production Data Assimilation Combining Gradual Deformation With Adaptive Response Surface Methodology

Author:

Busby Daniel,Feraille Mathieu Denis1,Gervais-Couplet Veronique1

Affiliation:

1. Institut Francais du Petrole

Abstract

Abstract We propose a workflow to reduce initial uncertainty of the reservoir model by incorporating production data. Advanced statistical methods such as sensitivity analysis, Gaussian process response surfaces, sequential experimental design and gradual deformation are combined to produce a very cost effective approach to production data assimilation. In previous works, response surface and experimental design methods have been proven quite effective for uncertainty propagation workflows; however they were only able to deal with continuous and discrete parameters. By using the gradual deformation method we are able to include stochastic parameters such as permeability and porosity, thus avoiding previous limitations. The advantages of using advanced non-parametric response surface methods are highlighted both in obtaining accurate global sensitivity indices and also to apply a full probabilistic inversion approach. Note that both methods generally require several thousands of model runs and are therefore unpractical without using response surface methods. Statistical diagnostics are used to validate the response surface models and adaptive sequential design strategies are proposed to improve their accuracy. The workflow is applied to production data assimilation of a Brazilian oil field. In a first phase the production history mismatch is analyzed to understand the general behavior of the model as well as to select the uncertain parameters mostly responsible for this mismatch. To perform this phase experimental design and sensitivity analysis techniques are used. In a second phase another objective function is built using only data that seem to be possibly matched using the current model and set of parameters. The new objective function is used in a probabilistic inversion loop to obtain posterior distribution of parameters and to reduce the forecasting uncertainty. The results of the study can then be directly used to obtain reliable probabilistic forecasts. Moreover, posterior distributions of parameters can be utilized to reduce uncertainty ranges in a subsequent study with the updated geological model. Introduction Many assisted history matching methods are usually black box approaches that provide only one (or a very few) best history matched models. It is usually difficult to assess the quality of the history match obtained and to assess how much the obtained model is robust to observation data errors. In this paper a new workflow is presented to perform history matching studies involving advanced statistical methods. Statistical methods are used to support reservoir engineers handling complex reservoirs and high amount of data in order to better understand the reservoir models and their mismatch with the real reservoirs and to finally obtain more reliable probabilistic forecasts.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3