Scaling Laboratory-Data Surfactant-Imbibition Rates to the Field in Fractured-Shale Formations

Author:

Wang Dongmei1,Zhang Jin1,Butler Raymond1,Olatunji Kayode1

Affiliation:

1. University of North Dakota

Abstract

Summary By use of existing methods, typical oil-recovery factors from the Bakken and other shale formations are low, typically less than 5% of original oil in place (OOIP). We are investigating the use of surfactant imbibition to enhance oil recovery from oil shale or other tight rocks. Much of our previous work has measured surfactant-imbibition rates and oil-recovery values in laboratory cores from the Bakken shale, Niobrara chalk/shale, and Eagle Ford formations. With optimized surfactant formulations at reservoir conditions, we observed oil-recovery values up to 20% of OOIP incremental over brine imbibition. However, whether surfactant imbibition will be a viable recovery process depends on achieving sufficiently high oil-production rates in a field setting. This, in turn, depends on three factors: the area of formation contact (through fractures and microfractures) when/where the surfactant formulation is introduced; the rates of surfactant imbibition; and the distances of surfactant imbibition into the rock and ultimate oil-displacement effectiveness. In this paper, we use analytical models to scale laboratory surfactant-imbibition rates to a field scale in fractured-shale formations. In laboratory cores, we observed imbibition rates that varied inversely with time. Dimensionless scaling groups were applied that compensate for the effects of sample size and shape, boundary conditions, permeability, porosity, and viscosity. Calculations were made of available fracture area, assuming typical horizontal-well lengths and transverse-induced-fracture spacing in typical Bakken wells. These fracture areas were coupled with our imbibition-scaling groups to estimate oil-recovery rates in a field setting. Considering realistic timing, surfactant imbibition will generally not proceed more than a few meters into the low-permeability shale/chalk formations. These calculations indicate insufficient fracture area to provide a viable imbibition process if only the induced-fracture area is considered. However, recent results from geological, microseismic, and pressure-transient studies indicate considerably greater area associated with natural microfractures in our target formations. When the increased area suggested by the presence of microfractures is included in our analyses, the surfactant-imbibition process appears quite promising.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3