Some Approximate Solutions of Radial Flow Problems Associated With Production at Constant Well Pressure

Author:

Clegg M.W.1

Affiliation:

1. The British Petroleum Co. Ltd.

Abstract

Abstract The application of the Laplace transformation to problems in the flow of compressible fluids in porous media has provided a large number of exact solutions. For plane radial flow, however, these solutions are either complex integrals or infinite series and are of little value to the field engineer. !n the case of production at constant well pressure, the available approximate solutions are valid for large times only. In this paper it is shown that an approximate inversion formula for the Laplace transform, developed for the solution of viscoelastic problems, is applicable to radial flow problems and provides simple analytical solutions to constant terminal pressure problems. The method may be used to obtain approximate solutions to many problems, including media with radial permeability discontinuities, multi-layer formations and pressure buildup in wells after shut-in. The results are compared with the few available computer solutions as well as the large time solutions, and it is shown that this approximate method greatly extends the time interval over which a simple analytical solution is acceptable. INTRODUCTION The study of transient problems in the flow of fluids through porous media has benefited greatly from the application of transform methods. The use of the Laplace transformation for solving parabolic equations has been widely discussed in the field of heat conduction and diffusion as well as in the petroleum literature. Removal of the time variable with the Laplace transformation generally reduces the problem to a boundary value problem which may be solved by standard techniques. A much more formidable problem then faces the engineer, however, for frequently the transform does not possess a simple inverse. The result is that the general inversion integral must be used and this leads to either an infinite integral or an infinite series, both of which are difficult to handle from a computational standpoint. Asymptotic approximations for the inverse have been known for some time and these yield approximate inverse functions that are valid for very large or very small times - but frequently the times of interest lie somewhere between these two extremes. Therefore, some acceptable approximation valid over a larger interval of time is desirable. During the past few years a number of methods for achieving this have been developed and some of these are discussed briefly in this paper. The relative merits of the various methods are not evaluated here, but some general conclusions reached by other authors are given. One of these methods has been applied to problems associated with the radial flow of compressible liquids to producing wells. In the case of production at constant well pressure, the method leads to simple analytical solutions for a number of standard problems; e.g., homogeneous formation, permeability discontinuities, pressure buildup. These solutions greatly extend the range of validity of the asymptotic ones (valid for large times only) and should be of value in studying the behavior of wells producing under constant pressure conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3