Case Studies for the Fracturing of Highly Diverse Gas Reservoirs

Author:

Ajao Omobola1,Iwu Chijioke F.1,Economides Michael J.2

Affiliation:

1. Panagiotis Dalamarinis, Economides Consultants Inc.

2. University of Houston

Abstract

Abstract Hydraulic fracturing, which has emerged as the premier well completion technology in the petroleum industry, is applied to almost all natural gas wells, worldwide, but for different reasons. It may sound trite but all gas fields should be considered as "unconventional, compared to oil wells." In higher-permeability reservoirs (> 5 md) the remediation of reservoir-to-well turbulence is the main motivation. In lower-permeability reservoirs the main rationale is similar to oil- stimulation- but with significant adjustments. In much tighter reservoirs, including shales, the purpose is to inundate the formation with a very large number of parallel fractures, executed transversely from horizontal wells. This would lead to the effective draining of the Stimulated Reservoir Volume (SRV). We present here two complete field studies, one in a 17 md dry gas well in Siberia, and the second from a 0.0001 md shale formation in the United States. The shale formation is assumed to have a number of similar properties with the field data from the 17md gas well. The first study shows the impact of turbulence and its removal via hydraulic fracturing. We also show the management of inside-the-fracture turbulence through the adjustment of fracture geometry and the selection of higher permeability proppant. The design approach uses the Unified Fracture Design (UFD), which is the only way to adjust fracture geometry based on expected flow performances. The drainage shape and the irregular ratio between reservoir length and fracture spacing are important considerations in SRV. We also conduct a parametric study on the turbulence effects inside the fractures for a range of reservoir permeabilities. Which design/execution constraints are necessary at very low or very high permeabilities? For the shale reservoir, while turbulence effects appear to be inconsequential, the length of the fracture, the spacing among fractures and the actual number of fractures are the critical variables for the physical production optimization. Such a study is also presented in this paper.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3