Thermally Active Polymer To Improve Sweep Efficiency of Waterfloods: Simulation and Pilot Design Approaches

Author:

Garmeh R..1,Izadi M..1,Salehi M..1,Romero J.L.. L.1,Thomas C.P.. P.1,Manrique E.J.. J.1

Affiliation:

1. TIORCO

Abstract

Summary A common problem in many waterflooded oil reservoirs is early water breakthrough with high water cut through highly conductive thief zones. Thermally active polymer (TAP), which is an expandable submicron particulate of low viscosity, has been successfully used as an in-depth conformance to improve sweep efficiency of waterfloods. This paper describes the workflow to evaluate technical feasibility of this conformance technology for proper pilot-project designs supported with detailed simulation studies. Two simulation approaches have been developed to model properties of this polymer and its interaction with reservoir rock. Both methods include temperature-triggered viscosification and adsorption/retention effects. Temperature profile in the reservoir is modeled by energy balance to accurately place this polymer at the optimum location in the thief zone. The first method considers a single chemical component in the water phase. The second method is based on chemical reactions of multiple chemical components. Both simulation approaches are compared and discussed. Results show that temperature-triggered polymers can increase oil recovery by viscosification and chemical adsorption/retention, which reduces thief-zone permeability and diverts flow into unswept zones. Sensitivity analyses suggest that ultimate oil recovery and conformance control depend on the thief-zone temperature, vertical-to the horizontal-permeability ratio (Kv/Kh), thief-zone vertical location, injection concentration and slug size, oil viscosity, and chemical adsorption and its reversibility, among other factors. For high-flow-capacity thief zones and mobility ratios higher than 10, oil recoveries can be improved by increasing chemical concentration or slug size of treatments, or both. Reservoirs with low Kv/Kh (< 0.1) and high permeability contrast generally shows faster incremental recoveries than reservoirs with high Kv/Kh and strong water segregation. The presented workflow is currently used to perform in-depth conformance treatment designs in onshore and offshore fields and can be used as a reference tool to evaluate benefits of the TAP in waterflooded oil reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3