Numerical Study on Casing Integrity During Hydraulic Fracturing Shale Formation

Author:

Wu Xiaye1,Han Lihong2,Yang Shangyu2,Yin Fei3,Teodoriu Catalin1,Wu Xingru1

Affiliation:

1. The University of Oklahoma

2. Tubular Goods Research Institute of CNPC

3. Chengdu University of Technology

Abstract

Abstract Due to the layered texture and sedimentation environment, shale formations usually characterized as high heterogeneity and anisotropy in in-situ stresses. During the hydraulic fracturing process, fracturing fluid is injected at a pressure above the formation pressure. This injection process changes the local in-situ stresses in a quick and significant manner while generating fracture systems. In the regions of existing geo-features such as natural fractures and faults, local stress changes could lead to the activation of formation movement, which in return impacts the casing going through the locale. Casing deformations during hydraulic fracturing have been observed in Southwest China Sichuan basin, and it have impeded completion operations in certain regions. In order to ensure further exploring, we analyszed this phenomenon and propose practical solutions for fault reactivation prevention. To study the mechanism of local slippage and the impact on casing integrity, we set up a 2D finite element model with considerations of in-situ stresses acquired from fields, natural fracture orientation from available seismic data, and we simulated water injection process in order to quantify potential slippage and displacement. The finite element model features an integration of casing, cementing, and formation under the hydraulic fracturing conditions. For particular parameters such as permeability and leak-off coefficeint, we conducted sensitivity studies to quantify their impacts on displacement amount. The theoretical geomechanics studies indicate water induced slippage existence in shale due to its fracture reactivation. Using the finite element model, this paper interpreted and quantified the impact of fracturing fluid injection on casing from strike-slip fault regiems. Simulation results revealed that water injection into natural fractured shale formation can induce finite displacement characterized as fault slippage along discontinues surfaces. This study could help engineers to have a better prediction as how hydraulic fracture intereact with subsurface structures and potential risks that comes along with it. This type of casing damage can be reduced by improving well trajectory design, completion operation, and higher strength level of casing-cement system. The findings from this study not only can be applied to naturally fractured formations, but also to other pre-existing geo-features such as discountinues surfaces. It also provides fundamental basis for more practical solution to find the measures and overcome the casing deformation problems in hydraulic fracturing.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3