Non Aqueous Foam for Improving Hydrocarbon Miscible Flooding in Water Sensitive Tight Oil Formations

Author:

Sie Chao-yu1,Nguyen Quoc1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Enhanced oil recovery from tight carbonate formations has been challenging due to its high reservoir heterogeneity, unfavorable wettability to water, and low reservoir permeability which can restrict the application of traditional water-based EOR methods with mobility control (e.g. polymer). With the increasing availability of wet gas due to the rise of shale production over the last decade, we introduce a novel foam EOR utilizing the raw mixture of constituents of Natural Gas Liquids Mixture (NGLM) composed principally of ethane, propane, butane, and natural gasolines. This process involves the injection of NGLM with non-condensable gas (i.e. nitrogen) and non-aqueous foam stabilizing additive (such as surfactant) to simultaneously maximize the displacement efficiency based on its miscible nature and the sweep efficiency due to the mobility control as provided by the NGLM-based foam. The objectives of this study are to (i) investigate the feasibility of this non-aqueous-foam-enhanced miscible hydrocarbon flooding in sub-10-mD carbonate cores, and (ii) evaluate the effect of the non-aqueous foam on miscible displacement. The proof-of-concept study of non-aqueous foam assisted miscible displacement were conducted by performing a series of core floods in heterogeneous carbonate cores with sub-10-mD permeability. The effect of foam on oil recovery performance was evaluated based on the ultimate recovery factor and oil recovery rate. The effect of injection strategy (continuous drive injection and alternating injection) on non-aqueous foam propagation and overall recovery were evaluated and compared. The propagation of foam and the mobilization of the unswept oil were monitored based on the measured pressure drops of the core. It was found that non-aqueous foam-assisted miscible flooding can achieve promising ultimate recovery factor while significantly reducing the amount of injected NGLM. For the reference case (continuous NGLM injection), an ultimate recovery factor of 87.6% was achieved after 2.06 PV of NGLM injection. High ultimate recovery factor may be attributed to (i) the miscibility between NGLM and oil, and (ii) gravity stabilization (top-down injection). For continuous nitrogen drive (0.33 PV of NGLM slug followed by a nitrogen drive), a low ultimate recovery factor of 47.4% was observed due to the acceleration of the injectant breakthrough as caused by the extremely unfavorable mobility ratio between nitrogen and crude oil. With the non-aqueous foaming agent, the ultimate recovery factor for the continuous nitrogen drive was increased by 15.7%. Comparison between the overall and sectional pressure drops in these two cases indicates that the in-situ generation of non-aqueous foam significantly delayed the injectant breakthrough and recovered the unswept oil in the sections closer to the producer. For alternating injection, the ultimate recovery factor of the case with the foaming agent (87.5%) is 17.8% higher than that without the foaming agent. Most importantly, the ultimate recovery of the foam-enhanced NGLM-alternating-nitrogen is similar to that of the continuous NGLM injection with only 0.83 PV of NGLM consumed. Overall pressure drops in two foam-enhanced cases (continuous drive injection and alternating injection) indicate that foam generation and propagation are much stronger in the alternating injection case which leads to the higher ultimate recovery factor and sweep efficiency. This could be attributed to the "foam dryout" effect caused by the continuous desaturation of the mobile liquid phase in the case of single liquid slug injection. Lastly, NGLM efficiency (defined as the volume of crude oil recovered divided by the volume of injected NGLM) was calculated to evaluate the commercial vitality of this process. This work demonstrates for the first time that non-aqueous-foam-asissted hydrocarbon miscible flooding is technically feasible in sub-10-mD rocks where conventional mobility control options are quite limited. The experimental results show that the ultimate recovery factor of hydrocarbon miscible flooding in low permeability carbonate cores can be significantly improved by non-aqueous foam with lower consumption of NGLM.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3