Evaluation of CO2 as an Acid Catalyst Precursor for Promoting a Nitrogen-Generating System

Author:

Mesquita Marcos Vinicius Miranda1,de Oliveira Alline V. B.1,Bispo Felipe J. S.1,Pacheco Ortiz Ronald Wbeimar1,Venancio Fabricio1,Gonçalves Vinicius Ottonio O.1,Kartnaller Vinicius1,Cajaiba João2ORCID

Affiliation:

1. Universidade Federal do Rio de Janeiro

2. Universidade Federal do Rio de Janeiro (Corresponding author)

Abstract

Summary Nitrogen-generating systems (NGSs) are mainly used in the oil industry to fluidize low melting point organic deposits and gas hydrate buildups. They are exothermic reactions between two nitrogenous salts in acidic catalytic media. This work investigates the use of CO2 to promote NGS reactions instead of commonly used acids such as acetic and citric acids, which can be problematic for corrosion control. Sodium nitrite and ammonium chloride were the reactants, and CO2 performance was evaluated for up to 4 hours at 5 and 25°C, and either under autogenous pressure at 10, 25, and 50 bar of CO2 or pressurized at 10 bar of CO2 by adding 40 bar of nitrogen (totaling 50 bar). The nitrite conversion was determined by measuring the concentration of residual nitrite using titration. Thus, it was verified that the CO2 effectively promoted the NGS at various experimental conditions. The nitrite conversion increased with increasing CO2 pressure and increasing temperature. Moreover, the nitrite conversion was enhanced in the pressurized system (PS) because the high pressure enabled the dissolution of CO2 in the aqueous medium, and therefore, the constant formation of carbonic acid, favoring the acidic catalytic medium at the reaction. This advantage was confirmed by carrying out an NGS catalyzed by acetic acid, in which the pH increases as reagents are consumed, and therefore, a lower nitrite conversion is achieved. The use of CO2 also converts the NGS in a process more suitable for flow assurance applications in offshore oil production, particularly in the Brazilian presalt fields where the coproduced CO2 can be used.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3