Ocean Bottom Node Acquisition and Processing Techniques Provide New Insights into the Exploration Potential of the Gulf of Suez

Author:

Hussein K.1,Kanrar A.2,Saleh W.2,Castelan A.R.2,ibrahim Y.1,Khdhaouria M.3,Elsabaa A.2,Kocel E.2,Khalifa A.2,Abdelfattah M.2,Abouelela Abdalla2,Tewari Sugandha2

Affiliation:

1. GUPCO

2. SLB

3. Dragon Oil

Abstract

AbstractThe complex geology of the basin makes the Gulf of Suez one of the most challenging areas for seismic imaging. Strong impedance contrasts between lithological boundaries, such as the top of the layered evaporite sequence (LES) and various intervals within the heterogeneous LES, generate strong multiple reflections that mask the subsalt target at the reservoir level. Additionally, the halokinesis creates illumination effects in the pre-salt section. Existing legacy seismic data in the area, primarily from towed-streamer acquisitions, suffers from poor imaging, heavy multiple contamination, and a lack of illumination as the complex subsurface scatters much of the wavefront energy before it penetrates deeper pre-salt targets.We performed extensive survey design and modelling (SDM) studies accounting for the challenges in the Gulf of Suez and completed simulations of different acquisition programs to evaluate the best parameters to solve these challenges. SDM studies confirmed that the long-offset, wide-azimuth, and high-fold attributes of an ocean-bottom node (OBN) acquisition coupled with a short, towed-streamer acquisition for near offsets would overcome these challenges to deliver improved images of the pre-salt target. Hence, in 2020, we executed the first ever combined OBN and towed-streamer acquisition in the Gulf of Suez, acquiring suitable data in the presence of the various obstructions including shipping lanes, platforms and pipelines that are common in this area. We present the challenges faced and our innovative use of existing seismic data processing technologies to maximize the potential of the inherent benefits of the full-azimuth, longer offset, higher fold and multi-component data recorded by the OBN acquisition. The up-down deconvolution (UDD) technique was used to attenuate surface multiples. As almost all the layers from the water bottom to the salt body are considered as strong multiple generators, internal multiples were also a significant challenge, and hence both short towed-streamer and OBN data were used to predict the internal multiples using all major multiple generators in the prediction process. The earth model building was performed using a cascaded top-down approach. Full-waveform inversion updates were interleaved with common-image point tomography updates, to define the shallow sediments, evaporite section and pre-salt target. Integration of the data available; OBN, streamer, gravity, magnetics, near field and well data was key to the success of the earth model building process. Comparing the final results with the legacy seismic image available, we observed that the OBN data substantially improved the imaging of pre-salt structure, stratigraphy, rotated fault blocks and dipping strata of the pre-rift and syn-rift reservoirs. Dip-meter data in the surrounding wells validated the steeper dips. The OBN image, combined with the short towed-streamer data, provides new insights into the pre-salt target and opens avenues to re-explore mature and prolific areas of the Gulf of Suez.

Publisher

SPE

Reference15 articles.

1. What Will it Take to Bring a Renaissance to Gulf of Suez Exploration: Has the Time Arrived to Try Some Unconventional Source Rock Plays;Dolson;Search and Discovery,2018

2. A high-strain rift model for the southern Gulf of Suez;Bosworth,1995

3. Wescott, W. A., M.Atta, and J. C.Dolson, 2016, A brief history of the exploration history of the Gulf of Suez, Egypt: Presented at AAPG/SEG International Conference and Exhibition.

4. Seismic modeling study of subsalt-imaging problems in the Gulf of Suez: Middle East Oil Show;Ruckgaber,1993

5. A high-strain rift model for the southern Gulf of Suez (Egypt);Bosworth,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3