A Variational Approach to the Numerical Simulation of Hydraulic Fracturing

Author:

Bourdin Blaise1,Chukwudozie Chukwudi2,Yoshioka Keita3

Affiliation:

1. Department of Mathematics and Center for Computation & Technology, Louisiana State University

2. Craft & Hawkins Department of Petroleum Engineering, Louisiana State University

3. Chevron Energy Technology Company.

Abstract

Abstract One of the most critical capabilities of realistic hydraulic fracture simulation is the prediction of complex (turning, bifurcating, or merging) fracture paths. In most classical models, complex fracture simulation is difficult due to the need for a priori knowledge of propagation path and initiation points and the complexity associated with stress singularities at fracture tips. In this study, we follow Francfort and Marigo's variational approach to fracture, which we extend to account for hydraulic stimulation. We recast Griffith's criteria into a global minimization principle, while preserving its essence, the concept of energy restitution between surface and bulk terms. More precisely, to any admissible crack geometry and kinematically admissible displacement field, we associate a total energy given as the sum of the elastic and surface energies. In a quasistatic setting, the reservoir state is then given as the solution of a sequence of unilateral minimizations of this total energy with respect to any admissible crack path and displacement field. The strength of this approach is to provide a rigorous and unified framework accounting for new cracks nucleation, existing cracks activation, and full crack path determination (including complex behavior such as crack branching, kinking, and interaction between multiple cracks) without any a priori knowledge or hypothesis. Of course, the lack of a priori hypothesis on cracks geometry is at the cost of numerical complexity. We present a regularized phase field approach where fractures are represented by a smooth function. This approach makes handling large and complex fracture networks very simple yet discrete fracture properties such as crack aperture can be recovered from the phase field. We compare variational fracture simulation results against several analytical solutions and also demonstrate the approach's ability to predict complex fracture systems with example of multiple interacting fractures.

Publisher

SPE

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3