Reduction of Fines Migration by Nanofluids Injection: An Experimental Study

Author:

Habibi A..1,Ahmadi M..1,Pourafshary P..1,Ayatollahi Sh..2,Al-Wahaibi Y..3

Affiliation:

1. Institute of Petroleum Engineering, University of Tehran

2. EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University (now with Sharif University of Technology)

3. Sultan Qaboos University

Abstract

Summary Formation damage of oil reservoirs as a result of fines migration is a major reason for productivity decline. Formation fines are defined as unconfined solid particles present in the pore spaces of formations. Their migration, caused by fluid flow in the reservoir, can cause pore plugging and permeability reduction. In the last 3 decades, many studies have characterized fines and their migration effect on permeability reduction. There are many techniques in the industry to remediate the damage, especially in the near-wellbore region. Nanofluids (NFs) that contain nanoparticles (NPs) exhibit specific properties, including a high tendency for adsorption and being good candidates for injection into the near-wellbore region, because of the small nanoparticle sizes. In this paper, a packed column is used to study the use of different types of NPs to reduce fines migration in synthetic porous materials. Three types of NPs—MgO, SiO2, and Al2O3—are used here to investigate their effects on fines movement. The results indicate that fines may adhere to the matrix grains, hindering their migration, when the porous materials are soaked with NFs. Furthermore, to check the mechanisms of this remediation technique, the effect of nanoparticle concentration and fluid flow rates in the medium on fines detachment was studied. A theoretical model was used to calculate total energy of interaction for the surfaces to check experimental results, which was also validated with scanning electron microscopy (SEM) pictures for samples from synthetic cores. The results showed that addition of 0.1 wt% of MgO and SiO2 NPs reduced fines migration by 15% compared with the reference state. MgO NPs were found to be more effective, even at high fluid rates, when used at a higher concentration, as noticed in the macroscopic and microscopic results.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3