First Use of Novel High Temperature Water-Based Reservoir Drilling Fluid to Access Depleted Deepwater Reserves

Author:

Morrison Alexandra Clare1,King Conan1,Rodrigue Kevin1

Affiliation:

1. Halliburton

Abstract

Abstract A combination of divalent base brine and high wellbore temperature presents significant challenges for high density aqueous reservoir drilling fluids. Such systems traditionally use biopolymers as viscosifiers; however, they are subject to degradation at elevated temperatures. Non-aqueous drilling fluids are thermally stable but complete removal of the filtercake is challenging and this can lead to formation damage. This paper describes the qualification and first deepwater drilling application of a unique aqueous reservoir drilling fluid at temperatures above 320°F. A high-temperature divalent brine-based reservoir drilling fluid (HT-RDF) and a solids-free screen running fluid (SF-SRF) were designed, both utilizing the same novel synthetic polymer technology. Calcium bromide brine was selected for use to minimize the total amount of acid-soluble solids in the drilling fluid. A comprehensive qualification was undertaken examining parameters such as rheology performance across a range of temperatures, long-term stability, fluid loss under expected and stress conditions (16 hours at 356°F), production screen test (PST), and various fluid-fluid compatibility tests. Return permeability tests were conducted on the final formulations to validate their suitability for use. The synthetic polymer technology provided excellent rheology, suspension, and fluid loss control in the fluid systems designed in the laboratory. To prepare for field execution multiple yard mixes were performed to verify the laboratory results on a larger scale. Additionally, a flow loop system was utilized to evaluate fluid performance under simulated downhole temperature and pressure conditions before field deployment. The final high temperature drilling fluid as designed provided rheological properties that met the necessary equivalent circulating density (ECD) requirements while drilling the reservoir. The fluid loss remained extremely stable and there were no downhole losses despite the depleted nature of the wellbore. Production screens were run straight to total depth (TD) with no wellbore stability issues after a three-day logging campaign. High temperature aqueous reservoir drilling fluids have historically been limited by the lack of suitable viscosifiers and fluid loss control additives. This paper outlines the design, mixing and logistical considerations and field execution of a novel polymer-based reservoir drilling fluid.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3