Optimization of Fluorinated Wettability Modifiers for Gas/Condensate Carbonate Reservoirs

Author:

Fahimpour J..1,Jamiolahmady M..1

Affiliation:

1. Heriot-Watt University

Abstract

Summary Significant reduction in well productivity of gas/condensate reservoirs occurs because of reduced gas mobility caused by the presence of condensate/water liquid phases around the wellbore. There are certain fluorinated wettability modifiers that are capable of delivering a good level of oil and water repellency to the rock surface, making it intermediate gas-wet and alleviating such liquid blockages. The main objective of this experimental work has been to evaluate the performance of such chemicals for wettability alteration of carbonate rocks, which have received much less attention in comparison with sandstone rocks. Screening tests, including contact-angle measurements, unsteady-state-flow tests, and compatibility tests with brine, were performed by use of mainly anionic and nonionic fluorosurfactants. Results demonstrated that on positively charged carbonate surfaces, the anionic chemicals were sufficiently effective to repel the liquid phase, whereas the nonionic chemicals showed an excellent stability in brine media. A new approach of combining anionic and nonionic chemical agents was proposed to benefit from these two positive features of an integrated chemical solution. A number of low- and high-permeability carbonate-core samples were successfully treated by use of chemicals selected through screening tests. Optimization of the solution composition and its filtration before injecting it into the core proved very effective in reducing/eliminating the risk of possible permeability damage because of deposition of large chemical aggregates on the rock surface. The chemical solution optimized in this study can be considered as a potential wettability modifier for mitigating the negative impact of condensate/water banking in gas/condensate carbonate reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3