Water Leakoff During Gel Placement in Fractures: Extension to Oil-Saturated Porous Media

Author:

Brattekås Bergit1,Seright Randy2,Ersland Geir3

Affiliation:

1. The National IOR Centre of Norway and University of Stavanger

2. New Mexico Tech

3. University of Bergen

Abstract

Summary Crosslinked polymers extrude through fractures during placement of many conformance-improvement treatments, as well as during hydraulic fracturing. Dehydration of polymer gel during extrusion through fractures has often been observed and was extensively investigated during recent decades. Injection of highly viscous gel increases the pressure in a fracture, which promotes gel dehydration by fluid leakoff into the adjacent matrix. The present comprehension of gel behavior dictates that the rate of fluid leakoff will be controlled by the gel and fracture properties and, to a lesser extent, be affected by the properties of an adjacent porous medium. However, several experimental results, presented in this work, indicate that fluid leakoff deviates from expected behavior when oil is present in the fracture-adjacent matrix. We investigated fluid leakoff from chromium (Cr)(III)-acetate hydrolyzed polyacrylamide (HPAM) gels during extrusion through oil-saturated, fractured core plugs. The matrix properties were varied to evaluate the effect of pore size, permeability, and heterogeneity on gel dehydration and leakoff rate. A deviating leakoff behavior during gel propagation through fractured, oil-saturated core plugs was observed, associated with the formation of a capillary driven displacement front in the matrix. Magnetic resonance imaging (MRI) was used to monitor water leakoff in a fractured, oil-saturated, carbonate core plug and verified the position and existence of a stable displacement front. The use of MRI also identified the presence of wormholes in the gel, during and after gel placement, which supports gel behavior similar to the previously proposed Seright filter-cake model. An explanation is offered for when the matrix affects gel dehydration and is supported by imaging. Our results show that the properties of a reservoir rock might affect gel dehydration, which, in turn, strongly affects the depth of gel penetration into a fracture network and the gel strength during chase floods.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3