Extended-Time Conductivity Testing of Proppants Used for Multi-Stage Horizontal Completions

Author:

Pearson C. Mark1,Green Christopher A.2,McGill Mark3,Milton-Tayler David4

Affiliation:

1. Liberty Resources LLC

2. e-Frac® Limited

3. US Ceramics LLC

4. FracTech Limited

Abstract

Abstract The American Petroleum Institute Recommended Practice 19-D (2018) is the current industry standard for conductivity testing of proppants used in hydraulic fracturing. Similar to previous standards from both the API and ISO, it continues the practice of measuring a "reference" long-term conductivity after 50-hours of time at a given stress. The fracture design engineer is then left to estimate a damage factor to apply over the life of the well completion based on correlations or experience. This study takes four standard proppants used for multi-stage horizontal well completions in North America and presents test data over 250-days of "extended-time" at 7,500 psi of effective stress. The API RP 19-D procedure was followed for all testing, but extended for 250-days duration for the four proppant types: 40/70 mesh mono-crystalline "White" sand, 40/70 mesh multi-crystalline "Brown" sand, 100 mesh "Brown" sand, and 40/70 mesh Light Weight Ceramic (LWC). The 7,500 psi stress condition was chosen to replicate initial stress conditions for a 10,000 feet deep well with a 0.75 psi/ft fracture gradient - typical of unconventional resource plays such as the Bakken formation of North Dakota or the Delaware Basin in west Texas. Results presented provide a measure of the amount of damage occurring in the proppant pack due to time at stress. To the authors’ knowledge, there has never been any extended-time conductivity data published for multiple proppant types over the timeframe completed in this study - despite the obvious need for this understanding to optimize the stimulation design over the full life of the well. Results for the four proppant types are presented as conductivity curves as a function of time for the 250-days of testing. Pack degradation is shown to follow a semi-log decline. Late time continued degradation for all materials is extrapolated over the life of a typical well (40 years), and compared to extended-time particle size distribution and crush data to explain the results observed. Extended-time data such as this 250-day study have never been published on proppants such as these despite the fact that fracture conductivity has a major impact on the productive life of a well and the ultimate recovery of hydrocarbons from the formation. The data presented should be of great interest to any engineer involved with completion designs, or reservoir engineers assessing the productive life and ultimate recovery in the formation since economic optimization is primarily driven by the interplay of fracture length/area with extended-time in-situ fracture conductivity.

Publisher

SPE

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3