Production-Optimization Strategy Using a Hybrid Genetic Algorithm

Author:

Carpenter Chris1

Affiliation:

1. JPT Technology Editor

Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 177442, “Production-Optimization Strategy Using a Hybrid Genetic Algorithm,” by Damian Dion Salam, Irwan Gunardi, and Amega Yasutra, Bandung Institute of Technology, prepared for the 2015 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 9–12 November. The paper has not been peer reviewed. The optimization algorithm used in this work is a hybrid genetic algorithm (HGA), which is the combination of GAs with artificial neural networks (ANNs) and evolution strategies (ESs). This HGA attempts to simplify the complex and diverse parameters governing the production-optimization problem. The HGA is coupled with a commercial simulator and has been applied to real fields to quantify the benefits of this HGA over a base case with the conventional GA. Background GAs. GAs are part of a larger group of methods in artificial intelligence (AI) called evolutionary computation. These methods are inspired by natural evolution in biology. The GA has been well-recognized as an optimization method that has the ability to work in a solution space with nonsmooth and nonlinear topology, where traditional methods generally fail. Several entities that make up the building blocks of GAs have their direct counterpart in nature. Populations, individuals and their fitness, generations, and genomes are all present both in nature and in GAs. A detailed discussion of the GA method is provided in the complete paper. ANNs. ANNs are a method in AI inspired by brain structure and function. The method aims to interpret the functions, processes, simulators, or similar artifacts that produce input/output patterns by learning by use of given training points. The learning process for the ANN in this study uses a back-propagation (BP) algorithm. After learning from training data has been accomplished by an ANN, the system will receive input, process it, and provide the output. Many variants and types of ANNs exist. In ANNs, there are some nodes that receive inputs, some nodes that provide output, and hidden nodes in between. Neural networks are composed of nodes or units connected by directed links. Learning in an ANN is typically accomplished through use of examples. This is also called “training” in ANN because the learning is achieved by adjusting the weights iteratively so that a trained ANN can perform well to interpret the function by use of testing points. The most common method in training the ANN is the BP method.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3