Interpretation of the Alkaline-Surfactant-Polymer Pilot in West Salym Using Tracers

Author:

Karpan Volodimir1,de Reus Jasper2,van Batenburg Diederik2,Mikhaylenko Egor1

Affiliation:

1. Salym Petroleum Development B.V.

2. Shell Global Solutions International B.V.

Abstract

Abstract An Alkaline-Surfactant-Polymer (ASP) pilot was executed in the West Salym oil field in the Russian West-Siberian oil province. To successfully interpret the project outcome an extensive surveillance plan was put in place. A tracer program formed an important, stand-alone part of the plan. Tracers injection was designed and executed to evaluate the incremental oil production due to ASP injection by using A) change in volume swept between the pilot wells and B) change in oil saturations due to ASP flooding. This paper focusses on the practical aspects of the tracer program execution and how the tracer program results were used for the interpretation of the pilot. The West Salym reservoir is a sandstone formation with 83°C temperature, 2 cP crude oil viscosity, permeabilities ranging from 10 to 250 mD and porosity ranging from 18 to 22%. The field is operated as a mature waterflood, with oil production having peaked in 2011. To increase the recovery factor, a tertiary oil recovery technique (ASP) was selected. A confined five spot well pattern was chosen for conducting the ASP field trial. Due to low remaining oil saturation after the waterflood (executed also as a pre-flush for the ASP flood) the production watercut reverse due to the ASP injection changed only from 98% to 88-90%. Hence, it was important to evaluate the efficiency of ASP flooding using several independent approaches. In addition to field injection/production data, analytical and modelling techniques, the tracer data interpretation became a valuable source of information. Four tracer injection stages were conducted during West Salym ASP pilot. Passive and partitioning tracer injection/production data were analyzed using Shook's analytical method and supported by the reservoir modelling. Analytical analysis of field data was complicated by the production and injection upsets, as well as the changes in injected viscosities. Even though the requirement for steady state conditions were not fully met, the passive tracer recovery data provided an important input to the history matching of pilot dynamic model helping to determine the sweep increase due to injection of viscous chemical solutions. The partitioning tracer recovery data in the water post-flush were used to confirm the low residual oil saturation after ASP flooding.

Publisher

SPE

Reference19 articles.

1. "Alkali-Surfactant-Polymer Pilot Implementation in South Oman: Establishing Waterflood Baseline";Al-Shuaili,2016

2. "Field Piloting of Alkaline Surfactant Polymer in Sultanate of Oman";Al-Shuaili,2018

3. "Laboratory Evaluation of Inter-Well Partitioning Tracers for the Determination of Remaining Oil Saturation after ASP flooding";Austine,2015

4. Application of Internal Olefin Sulfonates and Other Surfactants to EOR;Buijse;Part 2: The Design and Execution of an ASP Field Test,2010

5. "Improved Method for Inter-well Partitioning Tracer Response Interpretation";Busch;EAGE We A07,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3