Thermal Stability of Oilfield Aminopolycarboxylic Acids/Salts

Author:

Sokhanvarian K..1,Nasr-El-Din H. A.1,de Wolf C. A.2

Affiliation:

1. Texas A&M University

2. AkzoNobel

Abstract

Summary Chelating agents are used to remove various inorganic scales, including sulfates and carbonates. They are also used as standalone stimulation fluids and as iron-control agents during acidizing treatments. The main chelating agents used in the oil field include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA), and glutamic acid diacetic acid (GLDA). (Note that the abbreviations for these chelating agents will be used throughout the rest of the paper.) One of the concerns with these chelants is their thermal stability at elevated temperatures. Chelant solutions (0.7 to 0.8 M) of HEDTA, GLDA, NTA, EDTA, and their mono-/disalts were prepared. The aqueous solutions of these chelants were heated at various temperatures (300 to 400°F) and times (2 to 12 hours). The concentration of chelant was measured with a titration method that uses FeCl3 solutions. The products of thermal decomposition of chelants were determined with mass spectrometry (MS) and gas-chromatography/MS techniques. Most chelants decomposed at temperatures greater than 350°F. At 400°F and after 12 hours of heating, diammonium salt of GLDA degraded more quickly than diammonium salt of EDTA chelant. Analyses of NH4H3GLDA with MS techniques after heating highlighted that the decomposition products included iminodiacetic acid, hydroxyacetic acid, and α-hydroxyglutaric acid. Studying the kinetics of aqueous solutions of NaH3GLDA, NaH2HEDTA, and (NH4)2H2EDTA showed that their thermal-degradation kinetics followed a pseudofirst-order reaction. The Arrhenius equation can be used to predict the activation energy that is necessary for the degradation mechanisms of chelants.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3